首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
加载速率对煤岩抗拉强度参数影响程度研究   总被引:2,自引:1,他引:2  
吕志强 《煤炭技术》2014,(10):301-302
加载速率效应是岩石材料力学特征的一个重要性质。采用室内实验方法,对煤岩进行不同加载速率下抗拉强度的影响程度研究。结果表明,加载速率的变化影响煤岩的抗拉强度及破坏模式,煤岩抗拉强度较低,具有低强度高脆性的特征,且受加载速率影响很大。加载速率较低会造成煤岩破坏过程沿着内部缺陷、天然裂隙破碎,有明显的延性特征。而加载速率较高时,拉伸破坏过程伴随煤粉的产生,呈明显的脆性破坏特征。该结论对分析煤岩受拉破坏条件及煤层气开发工程具有参考意义。  相似文献   

2.
利用全尾砂对矿山地表塌陷坑进行固结回填是解决尾矿堆存与地表塌陷两大矿山灾害行之有效的方法之一,如何保证回采过程中塌陷坑全尾砂固结体的稳定性至关重要。塌陷坑全尾砂固结体在回采过程中主要受到拉破坏,且与回采速率直接相关。基于此,本文选取程潮铁矿尾矿库尾砂,制作了不同配比(1∶4、1∶6、1∶8)和不同浓度(68%、72%、76%)的全尾砂固结体试样,开展了5种不同加载速率(0.01、0.02、0.05、0.1、0.2 k N/s)下的全尾砂固结体抗拉力学试验研究,探讨了不同加载速率下全尾砂固结体抗拉力学特性,揭示加载速率对全尾砂固结体抗拉破坏的影响机理。研究结果表明:固结体抗拉强度存在明显的加载速率效应,低浓度低配比的固结体抗拉强度受加载速率影响较大;固结体抗拉强度存在双临界加载速率现象,第一临界加载速率为0.05 k N/s,第二临界加载速率为0.1k N/s;低于第一临界加载速率时,加载速率对固结体原始孔隙存在压密效应,随着加载速率变大压密效应逐渐减弱,到第一临界加载速率时,压密效应消失,固结体抗拉强度最低,宏观裂纹最多,破坏最明显,最终耗弹比最大;高于第一临界加载速率时,加载速率对固...  相似文献   

3.
对短切碳纤维增强Li2O-Al2O3-SiO2玻璃陶瓷基复合材料(Csf/LAS)断裂特性进行了研究,结果:随加载速率增加,材料的断裂功γwof降低,而材料的抗弯强度先增加后降低,当加载速率为500MPa/s时,材料的抗弯强度最大,用扫描电镜观察,当加载速率较低时,有明显的纤维拔出,当加载速率高时,无明显的纤维拔出,纤维呈弯曲状。  相似文献   

4.
郭阳勇 《山东煤炭科技》2020,(3):189-191,195
以151302工作面为例,建立顶板固支梁结构力学模型。通过理论分析和数值模拟,得到推进速率与顶板应力和下沉量间的关系,可为相似地质条件的顶板灾害防治提供借鉴。  相似文献   

5.
对短切碳纤维增强Li2O-Al2O3-SiO2玻璃陶瓷基复合材料(Csf/LAS)断裂特性进行了研究,结果表明:随加载速率增加,材料的断裂功rwof降低,而材料的抗弯强度先增加后降低.当加载速率为500 MPa/s时,材料的抗弯强度最大.用扫描电镜观察,当加载速率较低时,有明显的纤维拔出;当加载速率较高时,无明显的纤维拔出,纤维呈弯曲状.  相似文献   

6.
弹性模量和极限应力随着加载速率的增加,也随之增加,并存在一定的线性关系;缓慢应变速率下的试件在破坏时往往出现台阶型分段跌落状,而较快应变速率下的试件则为光滑、陡峭和连续曲线;随着加载速率的增大,岩石塑性滞回能也在增大,即岩石的塑性变形越明显。  相似文献   

7.
运用PFC2D软件研究加载速率对充填混合材料力学特性影响,选取了0.2,0.5,0.8,1.0,1.25m/s五个加载速率对充填混合材料数值试样进行单轴压缩数值模拟试验,分析不同加载速率对数值试样的破坏模式,轴向应力峰值变化影响。发现:加载速率的增大抑制单一剪切面发展,呈现同步发展,破坏模式发生较大变化。加载速率的增加抑制颗粒间裂纹发育造成的强度弱化,同时较高的加载速率造成数值模拟试样承载结构破坏,数值试样强度随着加载速率的增加呈现先增加后减小的趋势,在临界加载速率1m/s时出现轴向应力最大峰值。  相似文献   

8.
为研究裂隙倾角和加载速率对岩石裂纹扩展及破坏模式的影响,采用中心钻孔法在50 mm×50 mm×100 mm的细砂岩试样上预制宽度范围为0°~90°的贯通裂隙,并对其进行声发射及摄影监测下单轴压缩试验和PFC数值模拟研究,综合分析其裂纹演化规律及变形破坏特征。结果表明:裂隙砂岩试样的破坏模式包含拉伸破坏、剪切破坏和拉伸/剪切混合破坏3种,根据裂纹起裂机理及发展轨迹可将其细化分为T1~4(拉伸)型、S1~3(剪切)型、M1~2(混合)型等9种类型,裂纹萌生亦可分为翼形裂纹、反抗拉裂纹、共面/非共面次级裂纹、横向裂纹等5种类型,且均与岩样加载破坏过程密切相关。岩样裂纹扩展及破坏模式受控于裂隙倾角α,随着α的增加,裂纹起裂应力升高,起裂位置由预制裂隙中央向尖端转移,裂纹前期萌生数量降低,岩样破坏模式由剪切破坏向拉伸破坏过渡。加载速率亦对岩样裂纹扩展及破坏模式产生影响,随着加载速率的增加,裂纹萌生类型由翼形裂纹变为反抗拉裂纹,且不再向其他裂纹类型转化,裂纹起裂时间缩短,破坏模式由剪切破坏向拉伸破坏过渡,岩样表面宏观裂纹数目降低。岩样的破坏过程与其声发射特征密切相关,声发射定位信息准确地反应了岩...  相似文献   

9.
不同加载速率下煤岩采动力学响应及破坏机制   总被引:3,自引:0,他引:3       下载免费PDF全文
研究煤岩在不同加载模式与不同加载速率下采动力学响应及破坏机制对认清煤矿动力灾害本质具有指导意义。基于塔山煤样,先后设计与开展了单轴拉伸与压缩、常规三轴及采动力学试验。获得了不同加载模式下煤样的力学特征参量和变形破坏特性。进一步对比分析了常规三轴试验与采动力学试验煤样变形特征的差异。得到煤样破坏前吸收能量密度随着轴向加载速率的关系,揭示了应力偏量是造成试样破坏强度和吸收能量密度提高的原因,是破坏产生的本质原因,但其受控于围压的临界值,及煤样损伤发生具有的时间效应。建立了采动力学条件下考虑加卸载过程中材料损伤的煤岩黏弹性模型屈服准则,包含有效体积应力的影响、应力差的影响、轴向加载速率的影响及围压卸载速率的影响,新的黏弹性模型屈服准则可以很好地解释加卸载速率引起的材料屈服强度变化。  相似文献   

10.
加载速率对岩石声发射信号影响的试验研究   总被引:3,自引:0,他引:3  
加载速率对岩石声发射信号的总体影响是巨大的。通过采集大理岩和红砂岩单轴压缩声发射信号,分析计算了不同加载速率下的声发射过程时间序列的参数,得到了声发射信号与加载速率的变化关系,结果表明,不同加载速率下的声发射信号特征具有明显的不同,随着加载速率的增大,能率和振铃率都随之增大,而产生的能量和振铃计数的总和却逐渐减少小,加载速率的不同,在某种意义上还会影响到岩石的破坏方式,加载速率越大,岩石的破坏越趋于剧烈。  相似文献   

11.
研制了工作面覆岩破断预测实验平台,对浅埋薄基岩条件顶板动载冲击效应进行了模拟;建立了顶板破断的弹性地基梁理论模型,计算出了基本顶破断时与煤壁的相对位置,得到了动载冲击的作用范围;建立顶板动载冲击的力学模型,结合岩石压缩曲线,应用功能原理得到了不同条件下的最大冲击载荷和支架伸缩量的解析表达式,得到了不发生压架事故的判别准则,验证了相似模拟实验结果。结果表明:基本顶多超前直接顶支撑边界破断,且冲击易发生液压支架上方完成;冲击载荷大小与直接顶厚度与裂隙发育程度、支架刚度和初撑力大小等因素有关,其值远大于工作面静载荷形成对液压支架的压力,动载冲击效应模拟实验验证了理论分析结果。  相似文献   

12.
为考察加载速率对煤单轴抗压强度特性的影响规律,利用TAW-2000型电液伺服岩石力学试验系统对取自山西省正利煤矿的4~(-1)号煤进行了不同加载速率下的力学性能测试,研究了峰值强度、弹性模量、轴向应变等与加载速率的关系,并探讨了试件可释放弹性应变能与耗散应变能随加载速率的变化规律。研究表明:1)与硬脆岩石不同,煤样的峰值强度随着加载速率的增大呈现先增高后降低的趋势。2)煤样的损伤应力与加载速率呈负相关。3)加载速率越快,试件轴向载荷增加越快,但当加载速率超过1.16×10~(-3) mm/s后载荷增加速度基本稳定。加载速率越快,试件损伤应力出现的越早,试件破坏越快。4)单轴压缩试验第Ⅰ阶段煤样耗散应变能转化速率均处于较低水平,且与加载速率呈负相关,第Ⅱ阶段耗散应变能随加载速率的增加大致呈先增大后减小的趋势,各煤样耗散应变能转化速率的最大值均出现在峰值点或峰后轴向应力陡然跌落点。  相似文献   

13.
针对层状砂岩的各向异性,探究了冲击荷载作用下层理角度对层状砂岩变形破坏的影响规律。加工制作了含软弱层理的砂岩标准试件,利用霍普金森杆试验系统进行了不同层理倾角下的砂岩动态巴西圆盘试验,并结合数字图像相关方法获得了圆盘试件变形场的演化云图。从破坏结果看,层理面与加载轴线之间的夹角对层状砂岩的变形破坏有显著影响。当软弱层理平行于加载轴线时,圆盘试件在加载端处首先产生应变集中,并随着冲击加载的作用迅速沿层理扩展,最终表现为从圆盘试件加载端向非加载端呈弧线形断裂的特征;当软弱层理垂直于加载方向时,圆盘试件中间首先形成多个应变集中区,表现为在加载轴线与软弱层理相交处萌生多个微裂纹,并在冲击加载的作用下微裂纹沿加载轴线不断相互贯通,最终形成径向扩展的宏观裂纹;当软弱层理面与加载方向成45°时,圆盘试件在加载端处首先沿层理方向形成显著的拉剪应变集中区,由于层理介质的抗拉强度和抗剪强度均低于砂岩基质体,因而表现为试件在拉、剪复合应力的共同作用下从加载端处产生多条沿层理面扩展的裂纹。从试验结果中还可以看出,在相同加载速率下,垂直层理试件的强度最高,水平层理试件的强度最低,倾斜层理试件的强度介于水平层理试件和垂直层理试件之间。随着加载速率的提高,不同层理方向的砂岩动态抗拉强度均呈线性增长的特征,但与无层理砂岩相比,含软弱层理砂岩的动态抗拉强度对加载速率的敏感程度较低。此外,层理角度对砂岩的开裂应变有较大影响,受剪应力的影响,倾斜层理砂岩的开裂应变高于垂直层理砂岩。  相似文献   

14.
无烟煤在冲击载荷下破坏模式与强度特性   总被引:1,自引:0,他引:1       下载免费PDF全文
高文蛟  单仁亮 《煤炭学报》2012,37(Z1):13-18
大直径单轴分离式霍普金森压杆试验表明:无烟煤在冲击载荷作用下,存在一个门槛速度4.3 m/s。这个门槛值为提高无烟煤块率,进行生产系统、储运系统改造优化等方面提供了可参考数量依据。根据试验曲线的特征,无烟煤具有显著的应变软化和应变硬化特征,初始弹性模量、屈服强度与极限强度都随着应变率的增加而提高,屈服强度最为显著。无烟煤在冲击载荷作用下破坏分为4种类型:压剪破坏、拉应力破坏、张应变破坏和卸载破坏,并以拉应力破坏、张应变破坏和卸载破坏为主要破坏形式。  相似文献   

15.
对充填体强度的研究大都停留在充填料成分上,很少采用物理方法改变强度的试验研究。针对港里铁矿全尾砂普遍偏细、含泥量大的特点,对充填料进行施加载荷试验。试验表明,加载全尾砂充填料可以提升其抗压强度,并与施加载荷大小成正比。另外,加载对于提高充填体早期强度效果尤为明显。  相似文献   

16.
李海涛  宋力  周宏伟  姜耀东  王宏伟 《煤炭学报》2015,40(12):2763-2771
加载速率的变化能够影响煤的强度表现,进而影响煤的冲击特性。选取属性相近(出自同一煤块)煤样进行多加载速率力学试验,得到试样的部分冲击特性评价指标(单轴抗压强度和冲击能量指数)随加载速率的变化规律,结果表明,上述指标随加载速率的增加先升高后降低,即存在临界加载速率,其冲击倾向性评价结果出现从无到强的全部可能性,且临界加载速率对应最强冲击可能性,提出描述该特性的“加载速率敏感度”指标和避免临界加载速率的方法,基于现场监测设计工作面推进速度与试验室加载速率的转换流程,实现了试验室结论向现场的应用,应用表明该方法具有较好的适用性。  相似文献   

17.
裂隙岩石力学行为是地下工程稳定性分析的基础。在基于西部浅埋巷道顶板受力特征分析的基础上,对单轴压缩压缩作用下含纵向裂隙砂岩的强度劣化特征及加载速率效应进行了试验研究。研究结果表明:裂隙偏移量较小(0~6 mm)时试样以劈裂破坏为主,而偏移量较大(12~24 mm)时试样出现劈裂和斜剪混合破坏,但斜剪是导致最终失稳的决定因素;随着偏移量的逐渐增大,试样承载力呈现先增大再减小后又逐渐增大的趋势,偏移量在6~12 mm之间出现一个明显的突变区域,这与试样破坏形态息息相关;随着加载速率的增大,裂隙试样承载力逐渐增大,而劣化系数逐渐减小,且表现为先剧减后平缓的分段式特征。  相似文献   

18.
The experimental tensile strength data are presented for some hard materials, that are obtained by the three-point bending at different loading rates. Owing to a wide range of change in the loading rates from 10−2 to 102 MPa/s, constants of Zhurkov’s kinetic equation have been determined. __________ Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, No. 3, pp. 11–17, May–June, 2006.  相似文献   

19.
矿山开采过程中存在岩石受周期性扰动影响,对岩石的力学性质产生显著影响。为了解不同循环加卸载方式下岩石的加载速率效应,对矽卡岩试样进行不同加载速率的恒下限循环加卸载和变下限循环加卸载试验,对比分析了不同加载速率两种循环加卸载方式下试样的变形特征、能量演化规律以及破坏特性。结果表明:试样的峰值强度和残余变形具有不同加速率效应,但其峰值强度相比于常规单轴压缩试验均有提升;随加载速率增大,试样各阶段的输入能、弹性能和耗散能均呈增长趋势,但表现形式有所差异;试样的破坏方式及形态均表现出加速率效应,随着加载速率的增大其破坏程度加剧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号