首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
基于COMOSOL的顺层钻孔有效抽采半径的数值模拟   总被引:2,自引:0,他引:2  
为了能够准确地确定顺层瓦斯抽采钻孔的有效抽采半径,以煤层瓦斯赋存及瓦斯流动理论为基础,根据达西定律和质量守恒定律,以钻孔周围煤体瓦斯流动场为研究对象,建立了顺层瓦斯抽采钻孔的瓦斯流动方程,并以沁新煤矿为例,利用COMOSOL软件对抽采钻孔在不同的抽采负压和抽采时间下的瓦斯流动方程进行了数值模拟,确定出了合理的抽采负压、抽采时间及有效抽采半径。  相似文献   

2.
王军 《煤炭与化工》2023,(4):112-114
为考察新景矿15123底抽巷钻孔的瓦斯抽采效果,通过现场测试和数值模拟分析,对钻孔抽采前后,钻孔瓦斯抽采量及有效抽采半径进行了研究。研究结果表明,钻孔连抽40d后,钻孔有效抽采半径可达0.7 m,连抽70 d后,钻孔有效抽采半径可达1.2 m,预计连抽150 d,钻孔有效抽采半径可达3 m左右,在此基础上,对钻孔布孔方式进行优化。  相似文献   

3.
《煤炭技术》2016,(12):235-237
为了提高滴道盛和矿30~#工作面瓦斯抽采钻孔间距布置的合理性,优化抽采效果,以钻孔瓦斯自然涌出量为指标,在不同孔间距条件下开展钻孔瓦斯抽采有效半径的测试。结果表明:采用瓦斯流量法对该煤层钻孔瓦斯有效抽采半径进行测试是可行的,抽采60 d时,其有效抽采半径为2.84 m;抽采90~180 d时,有效抽采半径为3.22~3.89 m。  相似文献   

4.
《煤炭技术》2016,(7):214-215
根据煤层瓦斯流动方程、煤体变形方程以及孔隙率渗透率变化方程建立钻孔抽采耦合数学模型,通过COMSOL Multiphysics对原始瓦斯压力1.5 MPa和瓦斯压力下降到1 MPa钻孔抽采过程中瓦斯压力变化和渗透率变化规律进行模拟,利用模拟结果得到煤层在瓦斯抽采过程中钻孔有效抽采半径的变化规律。  相似文献   

5.
瓦斯抽采钻孔布置间距对矿井瓦斯治理具有及其重要的意义,为提高瓦斯抽采率,利用Comsol数值模拟软件对煤层瓦斯抽采钻孔的有效抽采半径及钻孔布置间距进行了模拟试验,并在现场进行应用验证。结果表明:瓦斯抽采钻孔有效抽采半径随抽采时间的变化曲线符合对数变化规律,抽采时间在30~60 d时抽采半径增长最为迅速,60~120 d增长缓慢,120~180 d趋于稳定,且稳定在2 m;三钻孔叠加抽采效应下的合理钻孔布孔间距应在2.77~5 m;现场考察钻孔最大残余瓦斯压力0.20 MPa,最大残余瓦斯含量1.932 m3/t,均达到瓦斯抽采标准,可以达到瓦斯治理的目的。  相似文献   

6.
针对本煤层分段水力造穴钻孔抽采半径定义不明确、难以确定的问题,以古城煤矿3号煤层为背景,开展本煤层分段水力造穴钻孔抽采半径考察现场试验研究,结合不同试验钻孔的瓦斯抽采流量现场监测,运用瓦斯储量法考察了本煤层分段水力造穴钻孔和普通钻孔的抽采半径,获得了不同类型试验钻孔的抽采半径时变规律以及本煤层分段水力造穴对瓦斯抽采半径的扩大作用。结果表明:①在相同抽采时间内,前进式本煤层分段水力造穴钻孔和后退式本煤层分段水力造穴钻孔的抽采瓦斯纯量平均值分别是普通钻孔的3.08倍和3.79倍,抽采半径分别是普通钻孔的2.14~5.62倍和2.58~5.88倍,本煤层分段水力造穴钻孔能够显著提高钻孔瓦斯抽采纯量,有效扩大钻孔瓦斯抽采半径,且后退式本煤层分段水力造穴钻孔的扩大作用更加显著;②普通本煤层抽采钻孔和本煤层分段水力造穴钻孔的瓦斯抽采半径均具有时变特性,即抽采半径随着抽采时间的延长而相应扩大,并逐渐趋于某一极限值;抽采240 d后,普通钻孔的抽采半径基本达到极限,60 d内仅增长了0.01 m左右,钻孔瓦斯流量逐渐衰竭,而本煤层分段水力造穴钻孔的抽采半径仍能随时间延长而有效增长,瓦斯流量仍保持稳定,说明本煤层分段水力造穴钻孔的有效抽采时间和钻孔抽采寿命比普通本煤层钻孔更长。  相似文献   

7.
《煤》2016,(12)
瓦斯抽采钻孔有效抽采半径是煤矿布置抽采钻孔合理间距的重要依据之一,对瓦斯抽采效果具有非常重要的意义。文章通过对比分析几种常用的有效抽采半径考察方法,结合煤矿现场煤层瓦斯赋存情况,采用相对瓦斯压力指标法对余吾矿瓦斯抽采钻孔进行有效抽采半径考察分析,最后得出在瓦斯抽采钻孔接抽90 d时钻孔孔径113 mm、有效抽采半径为1.4 m的结论,为余吾矿瓦斯抽采设计提供了依据。  相似文献   

8.
为了探究不同因素对钻孔瓦斯抽采效果的影响,进行了试验矿区地应力现场测试,建立了煤体基质裂隙系统瓦斯运移理论模型;基于现场数据构建数值模型,研究不同抽采条件下的有效抽采半径变化规律;采用响应曲面法,分析不同因素的交互作用及对有效抽采半径的影响,得到各因素与有效抽采半径的响应曲面模型。结果表明:煤层初始渗透率对抽采半径的影响程度最大,抽采时间、抽采负压和钻孔孔径的影响程度依次变小;响应曲面模型显著性较好,决定系数为0.995 7;煤层初始渗透率与抽采时间的响应曲面扭曲程度最大,说明两者对抽采半径的交互影响显著;抽采时间与抽采负压的响应曲面扭曲程度最小,说明两者的交互影响作用最不显著。  相似文献   

9.
为解决本煤层准确测定瓦斯抽采有效半径问题,对传统压降法钻孔布置方式进行了改进,提出了"一抽一测"的钻孔布置方法。在同一水平高度,分组布置间距不等的抽采孔与测压孔,通过观察测压孔压力变化情况,结合压降曲线确定瓦斯抽采有效半径。现场试验结果表明:随着抽采时间延长,钻孔瓦斯抽采有效半径逐渐增大,抽采12 d时有效半径为1.5 m,20 d时达到2 m,60 d时,有效半径可达3.5 m,抽采90 d时,接近4 m,此后抽采影响范围不再扩大。  相似文献   

10.
为了研究水力冲孔钻孔有效抽采半径与冲煤量、抽采期的关系,采用煤层瓦斯含量法进行现场试验研究,采用冲煤量统计、瓦斯抽采数据采集等手段进行分析考察,最终获得中马村矿不同冲煤量和不同抽采期的水力冲孔钻孔有效抽采半径。研究结果表明,水力冲孔钻孔有效抽采半径随冲煤量及抽采时间的增加而增大,但增长速度逐渐衰减,根据其增长规律,获得中马村矿最佳水力冲煤量为1.0~2.0 t/m、最佳抽采期为90 d,相应的有效抽采半径为3.50~3.73 m,并通过卸压范围考察获得水力冲孔充分卸压范围为1.5 m,佐证了水力冲孔有效抽采半径考察结果的合理性。该研究方法具有较强的适用性,可为不同地质条件的矿井提供技术支持。  相似文献   

11.
为了准确测定霍尔辛赫煤矿3308工作面煤层钻孔有效抽采半径,合理布置钻孔间距,结合现场实测的煤层瓦斯压力和渗透率等参数,运用COMSOL-Multiphysics仿真软件对3308工作面钻孔的瓦斯涌出规律和有效抽采半径进行了模拟分析,并进行了现场实测验证。结果表明:有效抽采半径随着抽采时间的推进不断增大并最终趋于恒定值,整体呈正指数函数关系;瓦斯预抽率随着与钻孔距离的增加而不断减小并最终趋于恒定值,整体呈负指数函数关系;数值模拟和现场实测结果较为一致,钻孔有效抽采半径略大于1.5 m,现场每间隔3.0 m布置1个钻孔可大大提高煤层瓦斯抽采效果。  相似文献   

12.
为了研究瓦斯有效抽采半径影响因素,测定了煤层透气性系数、煤层瓦斯吸附常数、煤的坚固性系数和煤的工业分析等煤层瓦斯基本参数,建立了均质煤层单孔抽采模型,采用COMSOL数值模拟软件,模拟了不同抽采时间下瓦斯压力变化规律、不同孔深和抽采时间下瓦斯压力变化曲线。研究为类似矿井瓦斯有效抽采半径的设计提供理论基础。  相似文献   

13.
针对煤层瓦斯预抽钻孔布孔间距存在盲目性和不确定性等问题,以流固耦合原理为基础构建煤层瓦斯抽采流固耦合数学模型,借助FLUENT数值模拟软件对煤层瓦斯预抽钻孔有效抽采半径进行数值模拟研究,在多钻孔数值模拟的基础上对建新煤矿4207工作面煤层瓦斯预抽钻孔布孔参数进行了优化.结果表明:钻孔有效抽采半径随抽采时间的增加呈对数形...  相似文献   

14.
基于钻孔瓦斯流量和压力测定有效抽采半径   总被引:2,自引:0,他引:2  
为了准确的测定有效抽采半径,提出基于钻孔瓦斯流量和压力的测定方法。以抽采钻孔影响范围内残余瓦斯压力小于0.74 MPa且预抽率大于30%为指标,基于钻孔瓦斯流量的负指数衰减规律,推导出有效抽采半径计算公式,并结合瓦斯压力变化共同确定有效抽采半径。该方法应用于区域预抽消突钻孔布置中,分析了不同预抽时间下的钻孔有效抽采半径和极限抽采时间,并依据预抽90 d有效抽采半径为2.5 m,布置消突钻孔。残余瓦斯压力和预抽率的检验以及煤巷掘进期间的区域验证,均证明按该方法布置的预抽钻孔,消突效果有效。  相似文献   

15.
郝富昌  孙丽娟  左伟芹 《煤炭学报》2016,41(6):1434-1440
通过分析水力冲孔周围煤体的受力特征,建立了考虑煤的塑性软化和扩容特性的水力冲孔周围煤体黏弹塑性模型,分析了水力冲孔的卸压增透效果和孔径变化规律,制定了防止钻孔堵塞和注气驱替技术。研究结果表明:① 水力冲孔措施可以大幅度提高周围煤体的渗透率,冲煤量越多,水力冲孔的卸压范围越大,煤体的渗透率提高的幅度越大;② 由于煤的流变特性水力冲孔钻孔会产生缩孔现象,地应力越大,煤体强度越低,钻孔周围煤体的蠕变变形越剧烈,钻孔就越容易被堵塞,一旦抽采通道被堵塞,瓦斯抽采效果就会大幅度的降低;③ 采用下套管防堵孔技术,人工保留一条抽采通道,可长时间抽取高浓度瓦斯,抽采效果提高了2.7倍;④ 注气驱替与水力冲孔技术结合,单孔抽采纯量增加了8.1倍,可有效的提高瓦斯抽采效果。  相似文献   

16.
牛苛苛 《中州煤炭》2018,(12):49-52,56
为确保赵庄矿冲孔钻孔合理布置,采用COMSOL数值模拟软件内嵌流固耦合方程,对不同冲孔出煤量的有效抽采半径进行了模拟。结果表明,冲孔出煤量的增加可有效提高钻孔有效抽采半径,瓦斯抽采180 d时,冲孔钻孔每米出煤量为0.50,0.75,1.00 t的有效抽采半径分别为5.3,5.6,6.0 m。不同出煤量钻孔瓦斯抽采效果的差异性随着抽采时间的延长显著增强;钻孔冲出煤量与瓦斯有效抽采半径之间的演变规律呈线性关系。现场冲孔钻孔影响半径考察试验结果表明:现场冲孔出煤困难时,钻孔每米极限出煤量0.75 t的影响半径为5 m。  相似文献   

17.
随着矿井开采深度的增加和开采强度的增大,煤与瓦斯突出问题越来越严重,煤层瓦斯压力、瓦斯含量、地应力加大致使突出矿井的突出危险性越来越严重,突出频率增加,突出强度增大,大型、特大型突出所占比例越来越大,煤与瓦斯突出已成为严重威胁矿井安全生产的主要问题之一。目前不具备保护层开采条件的煤层,井下钻孔预抽瓦斯是防治煤与瓦斯突出的主要手段之一,钻孔瓦斯抽采效果与煤层瓦斯含量、透气性系数、抽采钻孔直径及负压、抽采目的和时间等因素有关。针对云盖山煤矿在瓦斯治理中采用的不同瓦斯治理钻孔,结合矿井实际生产条件和不同瓦斯治理钻孔的有效抽放半径的现场测试结果,对不同瓦斯治理钻孔的瓦斯抽采效果进行考察,验证了不同瓦斯治理钻孔的有效抽放半径等技术参数。  相似文献   

18.
煤层瓦斯抽采实现是防治煤与瓦斯突出、防止瓦斯爆炸和瓦斯燃烧的基本措施。目前钻孔对煤层进行瓦斯抽采期间,煤层渗透率的变化规律以及由渗透率变化引起的煤层瓦斯抽采特性是现场生产过程中经常忽略的问题。为分析瓦斯抽采期间煤层渗透率变化规律以及由渗透率变化引起的煤层瓦斯抽采特性,以渗透率主导影响因素有效应力和基质收缩效应作为切入点,主要采用理论分析的方法开展研究。结果表明:钻孔抽采使煤层有效应力增加、基质收缩;有效应力的增加使煤层渗透率降低,基质收缩使煤层渗透率增大;煤层瓦斯抽采呈现有效应力与基质收缩一负一正、先后占据主导作用的影响效应。  相似文献   

19.
陈祖国 《陕西煤炭》2020,39(1):74-76,103
钻孔有效抽采影响半径是确定钻孔布置参数以及预测瓦斯抽采消突时间的重要依据。确定顺层瓦斯抽采钻孔合理布置参数,采用数值计算的方式,对不同抽采时间下顺层钻孔瓦斯抽采有效影响半径进行计算,并现场考察验证。研究结果表明:相同抽采条件下,抽采钻孔直径为75 mm,抽采时间为120 d时,抽采影响半径达到了1.0 m;抽采时间为60 d时,抽采影响半径达到了0.5 m,与数值计算结果基本相同。在实际工作中应日常性收集煤层瓦斯赋存、瓦斯涌出等相关资料;经常分析瓦斯地质变化情况,在地质构造带或局部瓦斯富集区或煤厚变化地带进行采掘活动时,应采取安全技术措施。  相似文献   

20.
基于多物理场耦合的瓦斯抽放半径确定方法   总被引:3,自引:0,他引:3       下载免费PDF全文
郝富昌  刘明举  孙丽娟 《煤炭学报》2013,38(Z1):106-111
为了确定合理的瓦斯抽放半径,建立了考虑煤的流变特性、渗透率动态变化和吸附特征的渗流-应力耦合模型,对比分析了软硬煤层钻孔孔径变化规律,研究了抽放过程渗透率的动态演化规律,确定了软硬煤层的有效抽放半径,找出了瓦斯抽放半径的影响因素。研究结果表明:由于含瓦斯煤的流变特性,软硬煤层钻孔均会随时间发生缩孔现象,软煤层钻孔在短时间内就可能被堵塞,硬煤层钻孔直径虽有缩小但仍处于稳定状态,并不堵塞瓦斯抽放通道,在确定抽放半径时,应首先分析钻孔的孔径变化规律以确定有效抽放时间;瓦斯抽放过程煤的渗透率会随时间逐渐增大;煤体硬度、埋藏深度、初始瓦斯压力、初始渗透率和钻孔孔径等是影响瓦斯抽放半径的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号