首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 218 毫秒
1.
建立弹性基础边界基本顶薄板周期破断力学模型,采用有限差分理论,研究了基本顶厚度h、弹性模量E、边界弹性基础系数k以及k与h,E的比值关系对基本顶主弯矩与周期破断规律的影响,得出,E,h增大时,推进方向长边深入煤壁区及短边深入煤壁区绝对值最大主弯矩M_c与M_d、悬顶区后侧的最大主弯矩M_b均增大,M_d的增长幅度最大;k增大时,M_c,M_b,M_d均减小,M_d的减小幅度最大;依据主弯矩破断准则可得:E,h悬顶长度a_1较大或k较小时短边深入煤壁区上表面先破断,反之推进方向长边深入煤壁区上表面先破断;比值k/E或k/h~3不变时主弯矩M_c,M_b,M_d不变,起始破断位置不变。弹性基础边界基本顶周期破断类型为:(1)长边上表面→短边上表面→悬顶区后侧下表面;(2)短边上表面→长边上表面→悬顶区后侧下表面。  相似文献   

2.
一侧采空(煤柱)弹性基础边界基本顶薄板初次破断   总被引:2,自引:0,他引:2       下载免费PDF全文
建立长壁工作面,一侧采空(煤柱)、三边弹性基础边界基本顶薄板结构力学模型,运用有限差分法计算并研究了基本顶主弯矩分布特征及破断规律。得到:基本顶的起始破断位置为长边偏煤柱侧深入煤壁上表面(基本顶的弹性模量E、厚度h较小,弹性基础系数k较大时)或中部偏煤柱侧下表面(E,h较大,k较小时);煤柱的宽度Lm及支撑系数k_m变化时基本顶长边区,实体煤侧短边区以及中部区的主弯矩极值几乎不改变,但是煤柱区基本顶主弯矩极值变化显著、即显著影响煤柱侧基本顶的破断形式及基本顶整体的破断形态;由于考虑煤柱支撑的作用,当h,E较小,L_m,k_m较大时,基本顶深入煤柱区的上表面会发生破断,此种条件下基本顶的破断顺序为:长边深入煤壁上表面→中部下表面或实体煤侧短边深入煤壁上表面→煤柱区上表面,最终破断形态为非对称"O-X"型;h,E较大,L_m,k_m较小时煤柱区基本顶的上表面不破断,此种条件下基本顶的破断顺序为:中部下表面→长边深入煤壁上表面→实体煤侧短边深入煤壁上表面,最终破断形态为"U-X"型。  相似文献   

3.
建立基本顶弹性基础边界弹性薄板力学模型,运用偏微分方程有限差分方法,研究了推进步距、弹性基础系数、基本顶厚度与弹性模量对基本顶主弯矩与破断位置的影响,得出:基本顶厚度或弹性模量增大时,中部最大主弯矩Mz增大、长边与短边绝对值最大主弯矩Mc,Md减小;步距增大时,Mz,Mc,Md均增大、Mz增长幅度较小;弹性基础系数增大时,Mz减小、Mc,Md增大;根据主弯矩破断准则得出:推进步距或弹性基础系数小时基本顶中部先破断、反之长边超前煤壁先破断;基本顶厚度或弹性模量小时长边超前煤壁先破断、反之中部先断裂。基本顶厚度或弹性模量越大超前断裂距离越大;弹性基础系数或步距越大超前断裂距离越小。弹性基础边界时,基本顶存在3类破断顺序:① 长边-中部-短边;② 长边-短边-中部;③ 中部-长边-短边。  相似文献   

4.
建立长边为煤柱支撑、实体煤区为弹性基础边界的基本顶板结构力学模型,运用有限差分方法计算了煤柱宽度Lp1及支撑系数kp、基本顶厚度h、弹性模量E、实体煤区的弹性基础系数ks及跨距L对基本顶破断规律的影响。得到:(1) Lp1与kp既可改变实体煤区及中部区主弯矩大小且可显著影响煤柱区基本顶的破断形式及整体破断形态;(2)基本顶初次破断位置为长边实体煤侧深入煤壁上表面(E,h较小,L较大时),反之为中部区偏长边煤柱侧下表面;(3) Lp1,kp较大,E,h较小,L较大时,基本顶在煤柱区产生平行于煤柱轴向的断裂线,破断顺序为:长边实体煤区超前煤壁上表面→采空区中部偏煤柱侧下表面→长边煤柱区上表面→短边超前煤壁上表面,最终破断形态为非对称"O-X"型;(4)Lp1,kp较小,E,h较大,L较小时,基本顶在煤柱区不产生平行于煤柱轴向的断裂线,破断顺序为:采空区中部偏煤柱侧下表面→长边实体煤区超前煤壁上表面→短边超前煤壁上表面,最终破断形态为非对称"C-X"型;(5)比值ks/h~3或者ks/(Eh~3)不变时破断规律不变。  相似文献   

5.
建立考虑煤体弹-塑性变形的基本顶板结构初次破断力学模型,依据有限差分原理和主弯矩破断准则,系统计算研究了弹-塑性基础边界基本顶板结构初次破断位置、破断顺序以及全区域破断形态特征的影响因素及权重关系,并阐述了该力学模型的工程意义,得到:①基本顶厚度h、弹性模量E较大,而弹性煤体基础系数k_t及悬顶跨度较小时,基本顶的破断位置及顺序为:开采悬顶区中部下表面→深入未塑化的弹性煤体区上表面→短边深入未塑化的弹性煤体区上表面,在弹性煤体区上覆形成"O"型断裂圈;反之,基本顶的破断位置及顺序为:深入塑化煤体区上表面→开采悬顶区中部下表面→短边深入塑化煤体区上表面,在塑化煤体区上覆形成"O"型断裂圈,最终均形成"O-X"型破断形态;②煤体塑化范围b_0及塑化程度增大时,基本顶断裂线深入煤体的距离与基本顶各个区域的主弯矩绝对值均增大,即基本顶悬顶跨度会减小;③b_0及浅部塑化煤体基础系数k_0较大时,基本顶的破断位置及顺序为:开采悬顶区中部下表面→长边深入塑化煤体区上表面→短边深入塑化煤体区上表面,在塑化煤体区上覆形成"O"型断裂圈;b_0,k_0较小时,基本顶的破断位置及顺序为:长边深入弹性煤体区上表面→开采悬顶区中部下表面→短边深入弹性煤体区上表面,在弹性煤体区上覆形成"O"型断裂圈,最终均形成"O-X"型破断形态;④k_0与k_t为任意比值不变且k_t与h~3为任意比值不变时,基本顶的主弯矩大小、位置及破断规律不变。  相似文献   

6.
为研究长边煤柱(采空)条件下基本顶板结构的破断规律及工程价值,构建考虑长边煤柱宽度及承载能力与实体煤弹塑性软化特性的基本顶板结构力学模型,全面计算探究该条件下基本顶板在长边煤柱区及实体煤区的断裂位置、顺序及形态,并从6个层面、3个区域与传统模型对比,阐述模型所得新结论及意义。结论如下:(1)长边煤柱宽度与承载能力可显著影响实体煤区基本顶主弯矩大小及初次破断顺序,但是对实体煤区基本顶破断线所处区位(弹性区、塑性区、弹塑性分界区)影响小,长边煤柱也可显著改变基本顶在煤柱区的破断位态(3类),且随基本顶的弹性模量E及基本顶厚度h增大,长边煤柱的支撑系数kcm、宽度Lcm,实体煤的塑化范围Lt-s、塑化程度ks-0、弹性煤体基础系数ktt及工作面跨度Ld减小,其演变模式为:1条连续“长直线+两端短弧线”型(CM-N式)→2条临接对称“直线+短弧线”型(CM-L式)→2条大间距对称“短弧线”型(CM-D式);(2)实体煤的长边与短边区基本顶破断线的区位特征有5类,且...  相似文献   

7.
建立考虑两侧煤柱支撑与实体煤作为弹性基础的基本顶板初次断裂力学模型,采用差分算法及主弯矩破断准则计算研究得到如下结论。① 基本顶初始断裂位置为偏较弱煤柱侧悬顶区中部下表面(弹性基础系数k较小,基本顶厚度h、弹模E较大时),反之为偏较弱煤柱侧的长边实体煤区上表面;② 两侧煤柱的宽度L1,L2及支撑系数km1,km2改变时,基本顶中部区与实体煤区的主弯矩及位置几乎不改变,而两侧煤柱区的主弯矩及位置变化显著;③ E,h大,而L1,km1,L2,km2小时,基本顶在两侧煤柱区不断裂,破断顺序为:偏较弱煤柱侧的悬顶区中部下表面→偏较弱煤柱侧长边实体煤区上表面,断裂特征为非对称“=-X”型;反之基本顶在煤柱区会断裂,破断顺序为:偏较弱煤柱侧长边实体煤区上表面→偏较弱煤柱侧悬顶区中部下表面→较强煤柱区上表面→较弱煤柱区上表面,断裂特征为非对称“O-X”型;而L1,km1较小,L2,km2较大时,只较弱煤柱侧基本顶不破断,最终断裂形态为非对称“U-X”型;④ 比值k/E或k/(Eh3)不变(k,E,h改变时,km1及km2与k保持某个任意比值不变),基本顶破断规律不变。  相似文献   

8.
为了研究一侧采空条件下基本顶板结构的破断规律,构建考虑煤柱宽度及承载能力与实体煤弹塑性变形的基本顶板结构力学模型,全面计算探究了侧方采空条件下基本顶板在煤柱区及实体煤区的断裂位置、顺序及形态等。结论如下:(1)煤柱区基本顶的破断形态有3类且随着基本顶厚度h、弹性模量E及弹性煤体基础系数kt增大,而煤柱宽度Lm与煤柱基础系数ksm、煤体塑化范围Lts与塑化程度ξs及跨度L减小时的破断形态变化规律为"单一连续长弧形"→"临界对接双长弧形"→"分隔式双短弧形";(2) Lm及ksm主要影响煤柱区基本顶的破断位态;Lm及ksm增大,实体煤区主弯矩减小;(3)实体煤区基本顶破断位态有5类且随着h,E及ξs增大,而Lts,kt及L减小时的断裂模式演变规律为:"长边与短边断裂线均处于塑化煤体区"→"长边断裂线处于塑化煤体区而短边处于煤体弹塑...  相似文献   

9.
建立长边两侧采空(煤柱)与短边两侧弹性基础边界基本顶板结构力学模型,根据薄板主弯矩破断准则并结合偏微分方程有限差分算法计算研究了基本顶破断的影响因素及权重关系。得到:① c1与c2煤柱的支撑系数 kc1, kc2及宽度 Lc1, Lc2不仅显著影响基本顶在两侧煤柱区的主弯矩大小及位置且显著影响短边区及中部区主弯矩大小及位置;② 基本顶的弹性模量E与厚度h越大,短边实体区及两侧煤柱区的基本顶断裂线深入煤体距离越大;Lc1,Lc2越大,kc1,kc2越小,煤柱区断裂线深入煤柱距离越大;③ Lc1,kc1,Lc2及kc2较小而E,h较大时,基本顶在c1与c2煤柱区均不断裂,最终断裂形态为非对称“||-X”型;④ Lc2及kc2较大而h,E,Lc1及kc1较小时,基本顶在c1煤柱区(较弱煤柱)不断裂而在c2煤柱区(较强煤柱)会断裂,最终断裂形态为非对称“C-X”型;⑤两侧煤柱支撑系数及宽度均较大而E,h较小时,断裂形态为非对称横“O-X”型;⑥ k,kc1,kc2,E及h均改变而比值k/(Eh3)不变时(其中,比值k/kc1与比值k/kc2也不变),主弯矩大小不变且初次破断位置不变。  相似文献   

10.
为了研究基本顶初次破断与全区域反弹压缩场的时空关系,建立弹性基础边界基本顶板结构初次破断扰动力学模型,基于有限差分理论与主弯矩破断准则计算研究了基本顶板结构初次破断时全区域反弹压缩场的基本形态特征以及基本顶破断长度、破断发展过程及破断程度对全区域反弹压缩场的影响。结果如下:①基本顶深入煤体断裂时,在破断线外侧依次产生"半椭圆形反弹I区"、"椭环形压缩区"、"椭环形反弹II区"及"椭环形压缩区";②断裂线前侧反弹I区中部位置的反弹量最大,断裂线的两端部为压缩区;③首次断长与二次断长均较小时,破断线外围依次为"M形反弹I区"、"椭环形压缩区"及"椭环形反弹II区";首次断长与二次断长均较大时,断裂线外围依次为"M形反弹I区"、"环8字形压缩区"及"环8字形反弹II区";④基本顶破断程度越大,反弹量越大,而反弹压缩的分区特征与破断程度无关;⑤反弹II区包围了"悬顶区"且贯穿两巷及邻侧巷道区,反弹II区的内、外边界线的垂距基本相等,所以基本顶深入煤体破断时可在邻侧巷道及两巷区监测到反弹压缩信息。采用特制高精度位移传感器实验与工程实践验证了结论的合理性。形成预警基本顶大面积初次破断的"一同时与两滞后"原理及"两区域与两指标"监测位置及方法。  相似文献   

11.
为解决不同地质与开采条件下充填支架的关键参数确定问题,以充填开采条件下岩层移动的实际变形形态为基础,将基本顶作为研究对象,建立了基于多跨超静定结构的“顶板-支架-充填体”相互作用力学模型,煤壁和充填体为主要承载体,充填支架对顶板起限定变形作用,据此建立了连续顶板的力学平衡方程和变形协调方程,在充填支架支撑载荷未知的情况下进行问题的求解,将充填体分布弹性地基支承离散为若干跨等效弹性支承,取单跨隔离体进行分析,建立截面切口形变分量方程,进而推导得出跨间截面切口形变分量的矩阵表达式,得到的n+2个变形协调方程与3个平衡方程构成n+5个求解方程,对应n+5个未知约束,所求问题全部得解;为了更真实地反映顶板载荷的分布,更合理地分析顶板、支架和充填体的相互作用关系,尝试将力学模型与数值模型相结合,改变以往力学模型中将顶板载荷作为均布载荷的简化分析方法,建立与力学模型中充填支架作用和充填体参数一致的数值模型,将数值计算得出的覆岩应力曲线作为顶板载荷q(x),代入“顶板-支架-充填体”相互作用力学模型,由此解出模型中所有支座的反力、梁体内力、梁端弯矩等未知量,从而得出顶板载荷、支架和充填体支撑作用力的相互作用关系,通过具体算例分析了不同充填体弹性地基系数和不同顶板限定变形量条件下双顶梁结构充填支架前顶梁和后顶梁支护强度的变化规律,为充填支架关键参数的确定提供有效依据。  相似文献   

12.
采煤工作面伪斜布置时,采空区基本顶呈非矩形状,此时采空区上方基本顶的破断位置及其破断规律与矩形顶板有所不同。为研究伪斜工作面基本顶初次破断特征,根据弹性薄板力学理论建立直角梯形基本顶的板结构初次破断力学模型,同时推导出直角梯形薄板的弯矩公式,分析顶板破断位置及其破断规律;依据有限差分原理分析基本顶的应力极值大小及位置特征,对理论推导结果进行验证。结果显示,四边固支直角梯形薄板内力分布规律与矩形薄板大体相似,但在四条边界上,主弯矩极值的位置与矩形薄板有所差异,后者都位于中心部位,而前者整体向逆时针方向一侧移动,基本顶的初次来压呈椭圆状倾斜"O-X"型。  相似文献   

13.
坚硬顶板来压控制的探讨   总被引:9,自引:0,他引:9  
  相似文献   

14.
坚硬顶板破断释放的弹性能是冲击矿压的主要能量源之一,针对回采速度对坚硬顶板破断释放能量的影响机制,运用理论分析结合现场监测手段,对垮落带内的顶板悬臂梁结构,建立了基于弹性地基假设的三角增压载荷悬臂梁模型,推导得到回采速度控制下顶板梁的下沉量、弯矩及弯曲弹性能密度的解析解。对距煤层较近的低位未触矸破断式砌体梁结构,建立回采速度影响下的回转角与破断步距及破断释放能量的解析式,并进行讨论得到结论:加快回采速度使顶板悬臂梁的悬臂长度L和峰值应力集中系数a增加,使峰值距煤壁位置x0减小,3者均能造成顶板弯曲变形能增大,释放弹性能增加,且悬臂长度L和应力集中系数a影响效果更为明显;高速回采造成采空区充填程度低,促使关键块B的回转角增大,造成关键块A的破断步距增大,破断释放的能量也大幅增加,甚至促使原本为低位未触矸破断的砌体梁结构变为高位悬臂梁结构,其破断释放的弹性能更大,大能量矿震产生的动载易叠加高静载煤体诱发冲击,同时使超前段顶煤支护失效,造成冒顶事故;通过对关键层及围岩结构的判别,证实了两种坚硬顶板的破断模式,且微震监测表明坚硬顶板破断释放大能量矿震与回采速度有明显的正相关性,并得到坚硬顶板条件大采高工作面临界回采速度为4 m/d,科学指导了胡家河矿的开采强度优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号