首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
孙德山  赵君  高釆葵  郑平  刘小菲 《计算机科学》2014,41(4):230-232,243
根据一类分类思想,提出一种基于线性规划的支持向量回归算法,该算法揭示了一类分类和回归之间的关系。实验在一个正弦函数、一个混沌时间序列和一个实际的数据上进行。实验结果表明,所给算法的泛化性能优于标准的支持向量回归算法(ε-SVR)、线性规划支持向量回归算法(LP-SVR)和最小二乘支持向量回归算法(LS-SVR),实验结果也说明了所给算法的有效性和可行性。  相似文献   

2.
基于统计学习理论的支持向量机算法以其优秀的学习性能已广泛用于解决分类与回归问题。分类算法通过求两类样本之间的最大间隔来获得最优分离超平面,其几何意义相当直观,而回归算法的几何意义就不那么直观了。另外,有些适用于分类问题的快速优化算法岁不能用于回归算法中。研究了分类与回归算法之间的关系,为快速分类算法应用于回归模型提供了一定的理论依据。  相似文献   

3.
为克服维数灾难和过拟合等传统算法所不可规避的问题,利用支持向量机(Support Vector Machine,SVM)提出基于时序数据时间相关性的核函数修正选择方法,并以真实的二氧化硫(SO2)数据为实验数据验证该方法的有效性.实验结果表明采用时序核函数对测试数据集的拟合效果更好,并对模型泛化能力有一定的提高.  相似文献   

4.
分析现有支持向量回归方法的缺点和不足,给出一种改进的加权型支持向量回归方法及其wolfe对偶形式.引入凸函数降低对核函数的要求,并讨论当这些凸函数取不同形式时支持向量回归机的变形,为得到更为灵活的回归曲线提供有效工具.同时对广泛的支持向量回归模型、优化支持向量模型的泛化能力和运算速度等方面进行讨论.  相似文献   

5.
首先,讨论了支持向量回归(support vector regression,SVR)的基本原理.然后,从信息几何的角度分析了核函数的几何结构,通过共形变换(conformal transformation)构建与数据依赖(data-dependent)的核函数,使得特征空间在支持向量附近的体积元缩小,以改善SVR的机器性能.实验结果表明了方法的有效性.  相似文献   

6.
支持向量机分类与回归算法的关系研究   总被引:1,自引:0,他引:1  
基于统计学习理论的支持向量机算法以其优秀的学习性能已广泛用于解决分类与回归问题.分类算法通过求两类样本之间的最大间隔来获得最优分离超平面,其几何意义相当直观,而回归算法的几何意义就不那么直观了.另外,有些适用于分类问题的快速优化算法却不能用于回归算法中.研究了分类与回归算法之间的关系,为快速分类算法应用于回归模型提供了一定的理论依据.  相似文献   

7.
基于支持向量回归的唇动参数预测   总被引:6,自引:1,他引:6  
支持向量机学习方法以结构风险最小化原则取代传统机器学习方法中的经验风险最小化原则,在有限样本的机器学习中显示出优异的性能.将这一新的统计学习方法应用到多媒体交互作用的研究中,用支持向量回归的方法由语音预测唇动参数.通过对语音的线性预测系数进行主分量分析,有效地压缩了声学特征参数的维数.结合交叉校验和最速下降优化方法,选择最佳的支持向量回归学习参数.在汉语0~9的任意数字串上对唇高参数的预测实验结果达到了均方误差0.0096,平均幅度误差7.2%及相关系数0.8的效果.这一结果优于一个文中优化过的人工神经网络所达到的性能,说明这一方法很有潜力.  相似文献   

8.
负荷预测是电力行业非常重要的一项工作,是保证电网安全稳定运行的先决条件。提出了用支持向量机相关理论用于短期的负荷预测,结合某地区的真实数据,用Matlab中的libsvm工具包进行模型的建立,采用交叉验证方法确定最佳参数,并进行仿真预测和结果分析。结果表明,该方法的预测误差较小,具有较好的实用价值。  相似文献   

9.
针对制造业产品销售时序具有多维、小样本、非线性、多峰等特征,提出一种混沌果蝇支持向量机回归的产品销售预测方法。将混沌理论引入到果蝇优化算法中,从而提高果蝇种群多样性和搜索的遍历性,并在寻优过程中加入混沌扰动,避免搜索过程陷入局部最优,增加持续搜索可行解的能力。并用算例验证了混沌果蝇优化算法(Chaos Fruit Fly Optimization Algorithm,CFOA)的优化性能,通过优化支持向量机回归(Support Vector Regression,SVR)的参数构建销售预测模型,进行了汽车零部件销售预测。结果表明基于混沌果蝇支持向量机回归的产品销售预测方法是有效可行的。  相似文献   

10.
基于支持向量机的系统辨识   总被引:2,自引:1,他引:2  
支持向量机是在统计学习理论基础上发展的一种新的机器学习方法,由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点。该文利用支持向量机,选取不同的核函数,分别对线性自回归滑动平均模型、双线性模型、非线性模型进行模型辨识。仿真结果显示该方法具有良好的辨识性能。  相似文献   

11.
支持向量机回归的参数选择方法   总被引:5,自引:3,他引:5       下载免费PDF全文
闫国华  朱永生 《计算机工程》2009,35(14):218-220
综合4种支持向量机回归的参数选择方法的优点,提出一种对训练样本进行分析并直接确定参数的方法。在标准测试数据集上的试验证明,该方法与传统网格搜索法相比,在时间和预测精度方面取得了更好的结果,可以较好地解决支持向量机在实际应用中参数难以选择、消耗时间长的问题。  相似文献   

12.
张相胜  王蕾  潘丰 《计算机工程》2012,38(10):175-177
普通最小二乘支持向量机算法用于多尺度回归建模时精度较低。针对该问题,选取墨西哥草帽小波函数作为最小二乘支持向量机的核函数,设计一种基于小波核的多尺度最小二乘小波支持向量机。在此基础上,通过解二次优化问题求出多尺度回归建模问题的全局最优解,最终得出的多尺度回归模型能够有效地逼近多尺度信号。仿真结果表明,该算法具有较高的精度。  相似文献   

13.
一种基于粗糙集和支持向量机的混合分类算法   总被引:5,自引:0,他引:5  
李波  李新军 《计算机应用》2004,24(3):65-67,70
结合粗糙集的属性约简和支持向量机的分类机理,提出了一种混合算法。应用粗糙集理论的属性约简过程作为预处理器,可以把冗余的属性和冲突的对象从决策表中删去,但不损失任何有效信息;然后基于支持向量机进行分类建模和预测。这样可以大大降低数据维数,降低支持向量机分类过程中的复杂度,减少占用的存储空间,并在不同程度上避免了训练模型的过拟合现象,但分类性能并不会隆低.最后的仿真实例说明了所提方法的有效性.  相似文献   

14.
基于模糊支持向量机的步态识别   总被引:2,自引:0,他引:2  
路远 《计算机工程》2009,35(21):189-191
提出基于模糊支持向量机(FSVM)的步态识别方法,以人体步态的宽度向量作为特征,探讨直接取值法和模糊C均值2种模糊隶属度确定方法对FSVM步态分类效果的影响。实验结果表明,模糊C均值法的识别率均略好于SVM,直接取值法的识别率甚至低于SVM,因此,选取正确的模糊隶属度确定方法是FSVM能否成功应用于步态识别的关键。  相似文献   

15.
基于支持向量机的工程项目风险预测研究   总被引:3,自引:0,他引:3  
风险预测是工程项目风险管理的重要基础,本文在介绍支持向量机(SVM)基本原理的基础上,探讨了基于支持向量机的项目风险预测算法,根据以往同类工程项目的数据作为学习样本,来识别待研究项目的风险类别,从而做出项目风险水平的预测。本文同时也说明了Libsvm软件在项目风险预测方面的应用。  相似文献   

16.
提出用支持向量机回归方法实现高速公路限速控制,这是一个非线性系统建模问题。阐述了支持向量机回归算法,根据高速公路车辆群状态、路面性能、气象条件等,建立交通流速度限制支持向量机回归模型。仿真实验表明,支持向量机回归对小样本具有训练速度快、泛化能力好等优点。支持向量机回归方法为交通流限速控制的在线建模提供了一种切实可行的新思路。  相似文献   

17.
为了进一步提高支持向量机分类的准确性和泛化能力,提出一种基于支持向量机的改进二叉树分类算法.首先介绍支持向量机的基本原理,总结了常见的多分类器分类算法及其特点,结合现有分类算法的优点,为分类器引入了不同的权值,提出二叉树改进分类算法,有效避免了常用分类算法不足.通过仿真实验,与典型的多类分类算法对比,验证该算法的有效性,为多类分类预测研究提供了一条有效的途径.  相似文献   

18.
基于支持向量数据描述的分类方法研究   总被引:1,自引:1,他引:1       下载免费PDF全文
针对单类数据的分类问题,提出一种基于支持向量数据描述(SVDD)的分类算法。该算法利用SVDD获得包含单类数据的最小球形边界,通过该边界对未知样本数据进行分类,同时采用可行方向方法求解边界优化中的二次规划问题,并在UCI机器学习数据集上将该算法与LS—SVM算法进行比较。实验结果表明,该算法不仅获得了更高的分类准确率,而且具有较低的运行时间。  相似文献   

19.
水质系统是一个开放的、复杂的、非线性动力学系统,具有时变复杂性,针对水质预测方法的研究虽然已经取得了一些成果,但也存在预测精度与计算复杂度等难题。为此,本文提出一种基于最小二乘支持向量回归的水质预测算法。支持向量机是机器学习中一种常用的分类模型,通过核函数将非线性数据从低维映射到高维空间,在高维空间实现线性分类和回归,最小二乘支持向量回归(LS-SVR)利用所有的样本参与回归拟合,使得回归的损失函数不再只与小部分支持向量样本有关,而是由所有样本参与学习修正误差,提高预测精度;同时该算法将标准SVR求解问题由不等式的约束条件及凸二次规划问题转化成线性方程组来求解,提高了运算速度,解决了非线性复杂特性的水质预测问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号