共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
孙德山 《计算机应用与软件》2008,25(2):84-85
基于统计学习理论的支持向量机算法以其优秀的学习性能已广泛用于解决分类与回归问题。分类算法通过求两类样本之间的最大间隔来获得最优分离超平面,其几何意义相当直观,而回归算法的几何意义就不那么直观了。另外,有些适用于分类问题的快速优化算法岁不能用于回归算法中。研究了分类与回归算法之间的关系,为快速分类算法应用于回归模型提供了一定的理论依据。 相似文献
3.
为克服维数灾难和过拟合等传统算法所不可规避的问题,利用支持向量机(Support Vector Machine,SVM)提出基于时序数据时间相关性的核函数修正选择方法,并以真实的二氧化硫(SO2)数据为实验数据验证该方法的有效性.实验结果表明采用时序核函数对测试数据集的拟合效果更好,并对模型泛化能力有一定的提高. 相似文献
4.
分析现有支持向量回归方法的缺点和不足,给出一种改进的加权型支持向量回归方法及其wolfe对偶形式.引入凸函数降低对核函数的要求,并讨论当这些凸函数取不同形式时支持向量回归机的变形,为得到更为灵活的回归曲线提供有效工具.同时对广泛的支持向量回归模型、优化支持向量模型的泛化能力和运算速度等方面进行讨论. 相似文献
5.
首先,讨论了支持向量回归(support vector regression,SVR)的基本原理.然后,从信息几何的角度分析了核函数的几何结构,通过共形变换(conformal transformation)构建与数据依赖(data-dependent)的核函数,使得特征空间在支持向量附近的体积元缩小,以改善SVR的机器性能.实验结果表明了方法的有效性. 相似文献
6.
支持向量机分类与回归算法的关系研究 总被引:1,自引:0,他引:1
孙德山 《计算机应用与软件》2008,25(2)
基于统计学习理论的支持向量机算法以其优秀的学习性能已广泛用于解决分类与回归问题.分类算法通过求两类样本之间的最大间隔来获得最优分离超平面,其几何意义相当直观,而回归算法的几何意义就不那么直观了.另外,有些适用于分类问题的快速优化算法却不能用于回归算法中.研究了分类与回归算法之间的关系,为快速分类算法应用于回归模型提供了一定的理论依据. 相似文献
7.
针对制造业产品销售时序具有多维、小样本、非线性、多峰等特征,提出一种混沌果蝇支持向量机回归的产品销售预测方法。将混沌理论引入到果蝇优化算法中,从而提高果蝇种群多样性和搜索的遍历性,并在寻优过程中加入混沌扰动,避免搜索过程陷入局部最优,增加持续搜索可行解的能力。并用算例验证了混沌果蝇优化算法(Chaos Fruit Fly Optimization Algorithm,CFOA)的优化性能,通过优化支持向量机回归(Support Vector Regression,SVR)的参数构建销售预测模型,进行了汽车零部件销售预测。结果表明基于混沌果蝇支持向量机回归的产品销售预测方法是有效可行的。 相似文献
8.
负荷预测是电力行业非常重要的一项工作,是保证电网安全稳定运行的先决条件。提出了用支持向量机相关理论用于短期的负荷预测,结合某地区的真实数据,用Matlab中的libsvm工具包进行模型的建立,采用交叉验证方法确定最佳参数,并进行仿真预测和结果分析。结果表明,该方法的预测误差较小,具有较好的实用价值。 相似文献
9.
10.
宋杰 《计算机工程与应用》2011,47(26):32-34
基于线性规划的ν-支持向量机(ν-LPSVM)是在基于二次规划的ν-支持向量机(ν-QPSVM)的基础上提出的。ν-LPSVM和ν-QPSVM模型中的参数ν都可以控制支持向量的数目和误差,但ν-LPSVM的模型更为简单,应用前景更广。讨论了这种新型支持向量机的线性规划问题的最小2-范数解,在此基础上给出了一个快速、有限步终止的牛顿算法。数值实验表明,ν-LPSVM的牛顿算法快速而且有效。 相似文献
11.
一种基于粗糙集和支持向量机的混合分类算法 总被引:5,自引:0,他引:5
结合粗糙集的属性约简和支持向量机的分类机理,提出了一种混合算法。应用粗糙集理论的属性约简过程作为预处理器,可以把冗余的属性和冲突的对象从决策表中删去,但不损失任何有效信息;然后基于支持向量机进行分类建模和预测。这样可以大大降低数据维数,降低支持向量机分类过程中的复杂度,减少占用的存储空间,并在不同程度上避免了训练模型的过拟合现象,但分类性能并不会隆低.最后的仿真实例说明了所提方法的有效性. 相似文献
12.
基于支持向量机的工程项目风险预测研究 总被引:3,自引:0,他引:3
风险预测是工程项目风险管理的重要基础,本文在介绍支持向量机(SVM)基本原理的基础上,探讨了基于支持向量机的项目风险预测算法,根据以往同类工程项目的数据作为学习样本,来识别待研究项目的风险类别,从而做出项目风险水平的预测。本文同时也说明了Libsvm软件在项目风险预测方面的应用。 相似文献
13.
提出用支持向量机回归方法实现高速公路限速控制,这是一个非线性系统建模问题。阐述了支持向量机回归算法,根据高速公路车辆群状态、路面性能、气象条件等,建立交通流速度限制支持向量机回归模型。仿真实验表明,支持向量机回归对小样本具有训练速度快、泛化能力好等优点。支持向量机回归方法为交通流限速控制的在线建模提供了一种切实可行的新思路。 相似文献
14.
基于支持向量回归的唇动参数预测 总被引:7,自引:1,他引:6
支持向量机学习方法以结构风险最小化原则取代传统机器学习方法中的经验风险最小化原则,在有限样本的机器学习中显示出优异的性能.将这一新的统计学习方法应用到多媒体交互作用的研究中,用支持向量回归的方法由语音预测唇动参数.通过对语音的线性预测系数进行主分量分析,有效地压缩了声学特征参数的维数.结合交叉校验和最速下降优化方法,选择最佳的支持向量回归学习参数.在汉语0~9的任意数字串上对唇高参数的预测实验结果达到了均方误差0.0096,平均幅度误差7.2%及相关系数0.8的效果.这一结果优于一个文中优化过的人工神经网络所达到的性能,说明这一方法很有潜力. 相似文献
15.
支持向量机针对大规模数据集学习问题的处理需要耗费很长的时间,提出一种数据预处理的方法对学习样本进行聚 类,以此为基础得到一种模糊支持向量机.计算机仿真结果表明提出的SVM算法与传统的SVM训练算法相比,在不降低分 类精度的情况下,大大缩短了支持向量机的学习训练时间. 相似文献
16.
17.
增量回归支持向量机改进学习算法 总被引:1,自引:0,他引:1
传统的支持向量机不具有增量学习性能,而常用的增量学习方法具有不同的优缺点,为了解决这些问题,提高支持向量机的训练速度,文章分析了支持向量机的本质特征,根据支持向量机回归仅与支持向量有关的特点,提出了一种适合于支持向量机增量学习的算法(IRSVM),提高了支持向量机的训练速度和大样本学习的能力,而支持向量机的回归能力基本不受影响,取得了较好的效果。 相似文献
18.
该文提出了基于支撑向量机SVM(SupportVectorMachine)结合由主元分析PCA(PrincipleComponentAnaly-sis)导出的DFFS(DistanceFromFaceSpace)判据进行人脸视觉语音特征区域定位的方法。并与基于传统Fisher准则的线性判别方法FDA(FisherDiscriminationAnalysis)结合DFFS判据的定位结果进行了比较分析。在有限样本的情况下,基于SVM-DFFS的方法与传统的线性FDA-DFFS方法相比具有一定的优势。该文实验中所使用的样本数据来自中国科学院声学所汉语听觉、视觉双模态数据库(CAVSRv1.0)。 相似文献
19.
文章主要探讨了支持向量机在数据挖掘中的应用问题。在对中心型支持向量机的研究改进过程中,结合增量型支持向量机算法,将问题域扩展到多类别分类问题领域,从而设计了一个基于支持向量机技术处理样本均衡型和增量型的分类算法(theMBI-SVM)。在UCI数据库上进行了实验,结果证实该算法具有较高的稳定性、可行性和实用性。 相似文献
20.
文章提出了一种基于支持向量机的乐器识别方法。与其它的模式识别方法不同,支持向量机是专门针对有限样本情况下的一种分类方法,在小样本的情况下,它的准确率一般优于传统的模式识别方法。它是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。实验以乐器的MFCC系数和它的一阶导数为声学特征,建立一个自底向上的二叉树的支持向量机模型。实验表明这种识别方法是一种有效的识别方法,它的准确率高于GMM方法。 相似文献