首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous mercury intrusion porosimetry (MIP) studies have been carried out to investigate the pore structure in cement-based materials. However, the standard MIP often results in an underestimation of large pores and an overestimation of small pores because of its intrinsic limitation. In this paper, an innovative MIP method is developed in order to provide a more accurate estimation of pore size distribution. The new MIP measurements are conducted following a unique mercury intrusion procedure, in which the applied pressure is increased from the minimum to the maximum by repeating pressurization-depressurization cycles instead of a continuous pressurization followed by a continuous depressurization. Accordingly, this method is called pressurization-depressurization cycling MIP (PDC-MIP). By following the PDC-MIP testing sequence, the volumes of the throat pores and the corresponding ink-bottle pores can be determined at every pore size. These values are used to calculate pore size distribution by using the newly developed analysis method. This paper presents an application of PDC-MIP on the investigation of the pore size distribution in cement-based materials. The experimental results of PDC-MIP are compared with those measured by standard MIP. The PDC-MIP is further validated with the other experimental methods and numerical tool, including nitrogen sorption, backscanning electron (BSE) image analysis, Wood's metal intrusion porosimetry (WMIP) and the numerical simulation by the cement hydration model HYMOSTRUC3D.  相似文献   

2.
Analysis of the pore space is crucial for a profound understanding of the transport and mechanical properties of porous materials. Mercury intrusion porosimetry (MIP) is an easy and widely applied method to determine the pore size distribution of mesoporous materials, but a principal problem makes data interpretation difficult. Large ink-bottle pores may be accessed by the intruding mercury through smaller, so-called neck pores only. This leads to significant under estimaion of pore sizes and to hysteresis effects between intrusion and extrusion in materials with a broad pore size distribution such as cement-based materials. More accurate pore space information is obtained when ink-bottle pores in the measurement are excluded from analysis. This may be achieved by repeated intrusion cycles or by impregnating the ink-bottle pore space with Wood's metal. The combination of Wood's metal impregnation (WMI) and mercury intrusion in mortars and cement pastes as presented allows a characterization of the pore space independent of accessibility considerations. Different special pore types are defined, analyzed, and quantified. In a cement paste, 50% of all pores are found to be ink-bottle type, of which 60% are accessible through neck entrances larger than 20 nm in diameter. A further 30% of all pores are nonink-bottle type but are connected to the surface through such ink-bottle pores only. Furthermore, hysteresis and contact angle alternation effects between intrusion and extrusion were studied. A contact angle shift of 26° between intrusion and extrusion is proposed.  相似文献   

3.
A survey of the capillary pore size distribution in hydrated tricalcium silicate pastes was made using mercury intrusion porosimetry. The results are interpreted in terms of microstructural features revealed by scanning electron microscopy, and also compared with earlier studies on cement pastes. Certain soluble calcium salts which influence the kinetics of the hydration of tricalcium silicate alter the morphology of the hydration products. This morphological change can be correlated with a change in pore size distribution observed with mercury porosimetry.  相似文献   

4.
Reinforcement of Portland cement-based binders with natural wollastonite microfibres has been further investigated with emphasis on the effect of fibre geometry on property modification. Wollastonite micro-fibres were separated into five different size groups before addition to cement and cement-silica fume matrices. The aspect ratio (length/width) of the wollastorite micro-fibres was determined by scanning electron microscopy technique. Systematic experimentation including flexural tests, mercury intrusion porosimetry, helium gas pycnometry, and isopropyl alcohol saturation measurement showed that, at constant micro-fibre content, the flexural strength and total porosity of the composites remained essentially unchanged and independent of the aspect ratio of the wollastonite micro-fibres. However, the volume of coarse pores, the pore size distribution, the flexural toughness and overall ductility characteristics of the hydrated cement and cement-silica fume matrices were observed to change systematically as the aspect ratio of wollastonite micro-fibres was increased. A discussion of the differences in the observed properties is presented.  相似文献   

5.
The present work focus the study of cortical bone samples of different origins (human and animal) subjected to different calcination temperatures (600, 900 and 1200 °C) with regard to their chemical and structural properties. For that, not only standard techniques such as thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy were used but also mercury intrusion porosimetry. The latter technique was applied to evaluate the effects of the temperature on the microstructure of the calcined samples regarding porosity and pore size distribution.  相似文献   

6.
Characterization of Sintered Copper Wicks Used in Heat Pipes   总被引:2,自引:0,他引:2  
Rectangular porous wicks for use in flat plate heat pipes were fabricated using copper powder (63 µm) sintered at 800°C and 1000°C. These wicks were characterized in terms of their porosity and pore size distribution using the techniques of mercury intrusion porosimetry and scanning electron microscopy (SEM). A uni-modal pore size distribution was obtained with most pores having sizes in the 30–40 µm range. Comparison was also made with cylindrical wicks fabricated by injection molding technique with the same binder and sintered at the same temperatures. Calculated permeability values of the rectangular wicks are comparable with commercially produced cylindrical wicks. When compared with conventional heat pipe wicks such as those using wire mesh, the advantage of these sintered wicks appears to be the existence of smaller pores and the controllability of porosity and pore size to optimize heat pipe performance.  相似文献   

7.
Transmission electron microscopy (TEM), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and nitrogen sorption technique (BET) were utilized to characterize the microstructure of a 10:90 wt% colloidal silica/potassium silicate gel as first described by Shoup. Gels in the unsintered state (15% theoretical density) were prepared for microscopy by the techniques of ultramicrotomy, Pt/C replication, and pore casting. Electron microscopic images of the ultramicrotomed thin sections (70 nm) show that the unfired gel possesses three distinct species of pores which are referred to as the micropores, mesopores, and macropores. The average micropore diameter was found to be 4 nm as determined by nitrogen desorption. Quantitative stereological analysis of the ultramicrotomed sections indicated that the average circular and lengthwise dimensions of the cylindrical mesopores were 0.15 and 0.39 μm, respectively. Similarly, this same analysis determined the average spherical macropore diameter to be 0.83 μm. In contrast, MIP results suggested that these gels possessed a unimodal pore size distribution centered around the 0.2-μm pore size. The discrepancy between MIP and microscopy can be explained by viewing the void space as a pore-throat network. Experimental evidence for this type of pore geometry was obtained from stereo pairs of Pt/C replicas and thick microtomed sections (0.5 μm) which gave information about particle connectivity and pore casts which depicted the pore connectivity in three dimensions.  相似文献   

8.
In this paper we show examples of microstructures of porous oxide ceramics prepared by traditional slip casting (TSC) and starch consolidation casting (SCC) and present results obtained using different microstructural characterization techniques; Archimedes method (open and total porosity), shrinkage measurement, mercury intrusion porosimetry (pore size distribution) and microscopic methods – optical microscopy with microscopic image analysis (pore size distribution) and scanning electron microscopy (detailed investigation of the local microstructure). In particular, microstructures are compared for porous ceramics from the system Al2O3–ZrO2 prepared with rice and corn starch. It is shown that maximum values of the total porosity of porous ceramics prepared with starch as a pore-forming agent were approx. 50%. A major finding by using SEM with respect to starch-produced porous ceramics is the existence of pore fillings in the form of small sintered ceramic shell inside the pores, as a result of starch granule shrinkage during the drying and burn-out steps.  相似文献   

9.
细菌诱导矿化保护历史建筑遗产的机理及效果   总被引:2,自引:0,他引:2  
为了研究细菌诱导碳酸钙在大理石、混凝土基材表层矿化沉积形成的人工层对基材加固保护的机理及性能,用X射线衍射、扫描电镜、压汞仪及超声波研究分析了矿化晶体物相,矿化层生长,沉积晶体对基材孔隙的影响以及矿化层黏结与保护效果.结果表明:矿化晶体为方解石和球文石;Ca2+源影响碳酸钙矿化沉积晶相,细菌在晶体矿化沉积过程中充当成核位点,且晶体均匀生长在基材表面;沉积致使试样孔隙率减少,但对孔隙分布无显著影响;矿化层与基材可以形成有效黏结.  相似文献   

10.
采用无压烧结技术制备了软锰矿掺杂的高强度氧化铝质压裂支撑剂.通过X射线衍射、压汞式孔隙分析、扫描电子显微镜和筒压法分别研究了由软锰矿引入的MnO2和Fe2O3对支撑剂物相组成、孔结构、晶粒尺寸和抗破碎能力的影响.结果表明:当软锰矿掺杂量为0~5%(质量分数,下同)时,烧结样品中包括氧化铝、莫来石和钛酸铝相,软锰矿的掺入未明显改变晶体结构;当软锰矿掺量为5%时,Fe3+取代Al3+与组分中的TiO2反应并形成固溶体,MnO2固溶于Al2O3晶粒中,促进了Al2O3晶粒生长,过剩的Fe2O3和MnO2存在于陶瓷晶界处并在高温煅烧F形成液相促进致密化烧结;未掺杂样品中存在大量连通气孔,显气孔率为14.79%:掺入5%软锰矿后,显气孔率降低至5.29%,样品内部多为均匀分布的近球形闭气孔;在52MPa压力条件下,5%软锰矿掺杂样品的破碎率与未掺杂样品相比减少80.95%,抗破碎能力显著提高.  相似文献   

11.
Effects of rate of pressure application and forms and type of sample on porosity and pore size distribution of concrete estimated through mercury intrusion porosimetry (MIP) are presented in this experimental work. Two different forms of concrete sample, namely, crushed chunks of concrete and small core drilled out from the concrete beam specimens, were used for this study. The results exhibit that the rate of pressure application in mercury porosimetry has little effect on porosity and pore size distribution of concrete. It is also demonstrated that small cores drilled out from large concrete specimens are preferable as samples for performing porosimetry test on concrete.  相似文献   

12.
X-ray computed tomography (XRCT) is a technique that uses X-ray images to reconstruct the internal microstructure of objects. Known as a CAT scan in medicine, it has found wide application for whole-body and partial-body imaging of hard tissues (e.g., bone). A modern tabletop XRCT system with a resolution of about 4 μm was used to characterize some pharmaceutical granules. Total porosity, pore size distribution, and geometric structure of pores in granules produced using different conditions and materials were studied. The results were compared to data obtained from mercury porosimetry. It was found that while XRCT is less precise in the determination of total porosity in comparison to mercury porosimetry, it provides detailed morphological information such as pore shape, spatial distribution, and connectivity. The method is nondestructive and accurate down to the resolution of the instrument.Tomographic images show that the pore network of individual granules comprises relatively large cavities connected by narrow pore necks. The major structural difference between granules produced at different conditions of compaction and shear is a reduction in the pore neck diameter; the cavity size is relatively insensitive to these conditions. Comparison of pore size distributions determined from tomographic images and mercury porosimetry indicates that mercury intrusion measures the pore neck size distribution, while tomography measures the true size distribution of pores ca. 4 μm or larger (the instrument resolution).  相似文献   

13.
Porosity, pore size distribution and in situ strength of concrete   总被引:3,自引:0,他引:3  
In this study, in situ strength of concrete was determined through compression test of cores drilled out from laboratory cast beams. The apparent porosity and pore size distribution of the same concrete were determined through mercury intrusion porosimetry, performed on small-drilled cores. The normal-strength concrete mixes used in the experimental investigation were designed to exhibit a wide variation in their strengths. To ensure further variation in porosity, pore size distribution and strength, two modes of compaction, two varieties of coarse aggregates, different levels of age, curing period and exposure condition of concrete were also introduced in experimental scheme. With the data so generated, an appraisal of the most frequently referred relationships involving strength, porosity and pore size of cement-based materials was carried out. Finally, a new empirical model relating the in situ strength of concrete with porosity, pore size characteristics, cement content, aggregate type, exposure conditions, etc., is presented.  相似文献   

14.
Pore size distribution and specific pore volume in the catalyst layer of polymer electrolyte membrane fuel cells were modified by controlling the temperature during the catalyst layer fabrication. Raising the temperature of the gas diffusion layer where the platinum catalyst is coated facilitated evaporation of the solvent in the catalyst ink and induced a large pore volume especially in the secondary pore. Fuel cell electrodes with large amounts of pores exhibit 30% improved single cell performance. The microstructure and electrochemical properties of electrodes were investigated by field emission scanning electron microscopy, mercury intrusion porosimetry, electrochemical impedance spectroscopy, and current-voltage polarization measurement. The results indicate that increased volume of the secondary pore reduces the mass transfer resistance and improves the performance.  相似文献   

15.
Various types of pore formers have been used for the fabrication of ceramics with controlled porosity. This study addresses a detailed and systematic comparison of different pore formers (e.g. graphite, polymethyl methacrylate, sucrose and polystyrene) with distinct features such as size, distribution and morphology of particles and decomposition/oxidation behavior. Investigations also involve their effect on the rheological properties of the slurries and the microstructural development of laminated porous ceramic tapes.Morphological features of the pore former particles were characterized using laser diffraction, B.E.T. surface area measurement and scanning electron microscopy (SEM) techniques as their thermal decomposition/oxidation behavior were determined by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) methods. Tape compositions were developed and optimized in order to incorporate identical volumetric loadings of the materials in the tape formulations with different pore formers for a reliable comparison of their pore forming characteristics. Porous yttria stabilized zirconia (YSZ) ceramics were fabricated without macroscopic defects (e.g. cracks, warpage and delamination) by developing heating profiles based on the identified thermal properties of the pore formers. Characterization of the sintered porous ceramics by SEM and mercury intrusion porosimetry techniques revealed novel relationships between the physical properties of the utilized pore formers, processing parameters and final pore structures.  相似文献   

16.
Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. Transmission electron microscopy, scanning electron microscopy, and X-ray diffraction were carried out to analyze the as-sprayed coatings and powders. Mercury intrusion porosimetry was applied to analyze the pore size distribution. Laser flash technique and differential scanning calorimetry were used to examine the thermophysical properties of the nanostructured coatings. The results demonstrate that the as-sprayed nanostructured zirconia coatings consist of the nonequilibrium tetragonal phase. The microstructure of the nanostructured coatings includes the initial nanostructure of powder and columnar grains. Moreover, micron-sized equiaxed grains were also exhibited in the nanostructured coatings. Their evolution mechanisms are discussed. The as-sprayed nanostructured zirconia coating shows a bimodal pore size distribution, and has a lower value of thermal conductivity than the conventional coating.  相似文献   

17.
To investigate the correlation of pore geometry and permeation characteristic, this paper evaluated the three-dimensional braided and/or woven carbon fabrics reinforced silicon carbide (3D–Cf/SiC) composites by mercury intrusion porosimetry, scanning electron microscopy and bubble point measurement. The flowrate–pressure curves of N2 through Cf/SiC panels were measured by pressure apparatus at room temperature, then the flow modes conversion were analyzed, and permeability K was calculated. The pore geometry of 3D–Cf/SiC is supposed to be a three dimensional network composed of multi-sized interconnecting chambers, channels and cracks with sizes from microns to nanometers. The permeability prediction by porosity proves that the contents and sizes of the full open inter-bundle channels are the determinant factors for the intrinsic through-flow capability of the composite. The capillary bundle model displays feasibility to predict K when the actual full-open pore size distribution is obtained by appropriate means, such as bubble point method.  相似文献   

18.
为解决混凝土耐久性差、脆性大等问题,研究了氧化石墨烯(GO)复掺聚乙烯醇(PVA)纤维对低水灰比水泥基材料力学性能及耐久性能的影响.利用Hummers法制备GO,并表征GO的结构和性能,通过测试分析了不同配合比砂浆的力学性能和耐久性,并通过MIP(压汞法)和SEM(扫描电镜)分析了氧化石墨烯以及PVA纤维对水泥基材料的改性机理.结果表明GO和PVA纤维均能提高水泥基材料的力学性能以及耐久性.GO复掺PVA纤维可以显著改善水泥基材料孔结构,降低孔隙率,提高水泥基材料抗氯离子渗透性能并降低水泥基材料收缩率.  相似文献   

19.
The effect of solids loading, particle-size distribution, and suspension viscosity on the resultant microstructure of slipcast monolithic ceramics prepared from aqueous suspensions of alumina and silicon carbide was studied. Unimodal alumina suspensions (average particle size = 0.6 μm) were prepared at 35, 37, and 42 vol%. Silicon carbide suspensions (average particle size = 0.7 μm) were produced with different quantities of dispersant at 37 vol%. Similarly, aqueous alumina suspensions of 42 and 50 vol% were produced with a bimodal particle-size distribution. The slip-cast microstructures were characterized by mercury porosimetry and small-angle neutron scattering, which provided pore size (distribution), pore fraction, and pore morphology. Essentially, the combination of these techniques deciphered packing differences obtained in the cake microstructures. For the alumina cakes produced from the 35,37, and 42 vol% suspensions, the individual characterization techniques, mercury intrusion, and the neutron scattering measurements showed that the cake microstructures were similar in pore size and quantity. However, comparison of the techniques and their assumptions showed differences in the pore shape. Mercury porosimetry and neutron scattering showed bimodal porosity for the cake produced from a mixture of 85% 6-μm particles and 15% 0.6-μm particles. Pore volume fraction and pore size increases were correlated with increased viscosity in the silicon carbide suspensions. In addition, the silicon carbide cake microstructures were measured, and homogeneity was evaluated as a function of position in the cast.  相似文献   

20.
E.S. Sinitsyna 《Polymer》2011,52(10):2132-2140
Hydrophilic macroporous monolithic materials based on a copolymer of 2-hydroxyethyl methacrylate with glycerol dimethacrylate was synthesized by photo-initiated free-radical polymerization of monomers in a presence of the low molecular mass porogens, such as cyclohexanol, dodecanol, toluene and heptane, as well as the solutions of hydrophobic polymers, namely, polystyrene of different molecular weights and concentrations in toluene, and poly(dimethyl siloxane) in heptane. The Hildebrand solubility parameters were used to predict the diluent-polymer compatibility. Pore size distribution and surface area characterization have been assessed by mercury intrusion porosimetry; scanning electron microscopy was used to evaluate the differences in macroporous morphology obtained with different porogenic agents. The monolithic materials were covalently attached to a glass surface directly at polymerization step. Monolithic layers were applied as platforms for microarrays to accomplish highly sensitive solid-phase protein analysis. The efficiency of developed microarrays was demonstrated using mouse IgG and goat anti-mouse IgG as a model affinity pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号