首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用真空电弧熔炼设备制备了新型TiZrHfNbSc难熔高熵合金,利用XRD、SEM、DSC等方法分析了合金的显微组织,利用显微硬度计、微控电子万能试验机测定了合金的硬度及力学性能。研究结果表明:TiZrHfNbSc难熔高熵合金为单一无序的BCC固溶体结构,晶格常数a=3.443?,合金密度约为7.16g/cm3;合金的维氏显微硬度约380,屈服强度σ0.2=650MPa,压缩变形率达到60%以上,合金的强化机制为固溶强化。  相似文献   

2.
以纯金属元素粉末为原料,采用放电等离子烧结工艺制备了MoNbTaW难熔高熵合金,研究了烧结温度和保温时间等工艺参数对MoNbTaW难熔高熵合金的物相、晶体结构、烧结行为和力学性能的影响。结果表明,在烧结温度1800℃和保温5min即可形成BCC单相高熵合金;烧结温度是影响MoNbTaW难熔高熵合金致密度、晶粒尺寸和力学性能的主要因素;随着烧结温度的升高,合金的晶粒尺寸增大,致密度、硬度和和屈服强度均增高;烧结温度为2000℃时合金的致密度可达99.8%,化学成分无偏析,屈服强度为1314±14MPa,断裂韧性为(5~6)MPa.m1/2,其断裂模式为解理断裂。  相似文献   

3.
综述了近年来难熔高熵合金(RHEAs)在合金设计、显微组织和力学性能方面的研究进展,并重点讨论了内在的强化机制和变形行为。难熔高熵合金主要由近等摩尔比的难熔元素组成,具有优异的力学性能,尤其是高温力学性能。然而,大多数难熔高熵合金的室温塑性有限。为了解决这一问题,研究人员已开展了大量相关研究工作,其中某些难熔高熵合金材料具有很大的高温实际应用潜力。难熔高熵合金除了具有优异的力学性能外,在其他性能方面也有优势,如生物相容性和耐磨性。最后,还讨论了难熔高熵合金目前存在的问题和对未来发展的建议。  相似文献   

4.
在众多高熵合金中,由5种或5种以上的难熔金属元素,按照等原子比或者近等原子比混合形成的难熔高熵合金,凭借稳定的相结构和优异的高温性能,在高温材料领域具有广阔的应用前景。本文从难熔高熵合金的研究现状出发,综述典型难熔高熵合金的微观组织和相组成、室温和高温力学性能、强韧化机理与力学性能调控,并对未来难熔高熵合金的研究开发进行展望。首先,将难熔高熵合金按照组成相进行分类,分析了难熔高熵合金的微观组织和相组成,然后总结了难熔高熵合金的室温和高温力学性能与强韧化机理,并讨论了3种不同的强韧化方案,即化学成分调控、工艺调控和相结构调控。最后对未来难熔高熵合金的发展进行了展望,并对其未来重点研究方向提出了如下建议:借助计算机等技术,模拟与计算材料的性能与形成相,构建难熔高熵合金的研究平台与数据库;借助组合实验方法,加快筛选新的难熔高熵合金;掌握自上而下和自下而上的实验方法,探究性能优异的新型难熔高熵合金体系。  相似文献   

5.
采用水冷铜坩埚悬浮熔炼与铜模吸铸相结合的方法制备了直径为3mm的Al_xCrFeNiMn(x=0、0.25、0.5、0.75)系高熵合金,通过X射线衍射、光学显微镜、扫描电镜、室温压缩试验、硬度测试等探索了不同铝含量、热处理温度和时间对AlxCrFeNiMn系高熵合金微观组织及力学性能的影响。结果表明,铸态Al_xCrFeNiMn(x=0、0.25、0.5、0.75)系合金的塑性变形基本相近,保持在34%左右,且铸态Al_(0.75)CrFeNiMn高熵合金的显微硬度、规定塑性延伸强度与抗压强度分别为524.15HV0.3、765.86MPa与3236.69MPa;不同温度和时间的热处理结果表明:Al_(0.5)CrFeNiMn具有更为细小且分布均匀的等轴晶,获得硬度最大值729.37HV0.3,并保持较大的塑性变形(30.33%),具有优良的力学性能。  相似文献   

6.
通过热压方法制备AlCrTaTiZr高熵合金合金靶材,采用磁控溅射方法在抛光后Si基体表面制备AlCrTaTiZrNx高熵合金涂层,并用扫描电镜、X射线衍射和纳米压痕仪等研究了靶成分、相结构及涂层的微观形貌、成分和常规力学性能。结果表明,AlCrTaTiZr高熵合金靶材为体心立方结构,AlCrTaTiZrNx高熵合金薄膜均匀致密,未通入氮气的薄膜为非晶态,通入氮气的薄膜晶体结构均为简单的面心立方结构。当氮气流量百分比为10%时,薄膜力学性能最好,其硬度和杨氏模量分别达到了22.9GPa和234.77GPa。  相似文献   

7.
采用机械合金化和放电等离子烧结工艺制备了CrFeCoNiB0.05Tix(x=0.2、0.4、0.6、0.8、1.0)高熵合金材料,通过X射线衍射分析、扫描电镜观察和能谱分析以及维氏硬度测试和压缩强度测试等,研究了Ti含量对高熵合金微观组织和力学性能的影响。结果表明,CrFeCoNiB0.05Tix(x=0.2、0.4、0.6、0.8、1.0)高熵合金由FCC、BCC和α相组成。当x=1.0时,合金由BCC结构转向HCP结构并析出新相Laves相,其具有最高硬度416.54 HV0.2。当x=0.8时,合金达到最大抗压强度586.3 MPa。  相似文献   

8.
高熵合金以全新的设计理念及优异的性能引起广泛关注。难熔高熵合金(RHEAs)作为高熵合金的一类,主要由BCC晶体结构构成,具有高强高硬的特点,同时具有抗高温软化能力。本文针对难熔高熵合金制备方法、相结构、组织形貌、力学性能、应用领域等方面进行阐述,并对难熔高熵合金的发展方向进行了展望。  相似文献   

9.
利用激光熔覆技术在AISI 304不锈钢表面制备了AlCoCrFeNiSix(x=0.1,0.2,0.3,0.4,0.5)高熵合金涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)、透射电子显微镜(TEM)、维氏硬度计和电化学工作站等,分析了Si元素对AlCoCrFeNiSix高熵合金涂层微观组织和性能的影响。结果表明:AlCoCrFeNiSix高熵合金涂层由体心立方(BCC)固溶体晶粒构成。随着Si元素含量的增加,Si元素置换固溶使晶格收缩,晶粒逐步细化,纳米尺度球状AlNi相在晶粒内脱溶,少量的Cr23C6碳化物沿晶界析出。微观组织的演化导致涂层的显微硬度升高,最大硬度达到848.1 HV0.3。AlCoCrFeNiSix高熵合金涂层的热力学腐蚀倾向和均匀腐蚀速率均低于基材AISI 304不锈钢。Si元素的掺杂提高了钝化膜的修复能力和稳定性,使腐蚀机制从自催化发展的点蚀转变为晶间腐蚀。  相似文献   

10.
通过扫描电镜(SEM)、X射线衍射(XRD)、电子探针微区分析(EPMA)、常规物理力学性能检测以及高温硬度测试方法,研究WC-Co硬质合金中添加质量分数为0.00%~3.00%的TaC对其组织结构、力学性能以及高温硬度的影响。研究结果表明:当TaC质量分数低于0.50%时,TaC主要溶解于硬质合金黏结相中,起固溶强化和抑制晶粒长大的作用,合金的室温维氏硬度和抗弯强度明显提升;当TaC质量分数由0.50%增加至3.00%时,合金结构中开始出现不均匀分布的(Ta,W)C析出相,合金的室温维氏硬度缓慢增加,抗弯强度先缓慢增加而后下降。添加TaC有助于提升硬质合金的高温硬度,提升效果与TaC添加量存在一定的正相关关系。在1000℃高温下,未添加TaC的合金高温维氏硬度为802 MPa,而添加质量分数1.50%的TaC的合金高温维氏硬度明显改善,其高温硬度值可达1 025 MPa。   相似文献   

11.
难熔高熵合金在反应堆结构材料领域的机遇与挑战   总被引:1,自引:0,他引:1  
传统反应堆结构材料性能已趋于极限,亟需开发新型材料。难熔高熵合金是以多种难熔元素作为主元的新型金属材料,具有独特的力学、物理和化学性质,尤其在高温力学、抗辐照等方面表现出优异的性能。难熔高熵合金在第4代核裂变反应堆包壳材料、核聚变堆面向第一壁材料等关键领域具有广阔的应用前景。本文结合具有代表性的文献,围绕难熔高熵合金的力学性能、抗辐照性能、抗氧化性能阐述了其强化机制与抗辐照机理,梳理了难熔高熵合金的发展脉络,在此基础上展望了难熔高熵合金在反应堆结构材料领域的应用前景。  相似文献   

12.
WMoNbCrTi高熵合金是一种极具应用潜力的高温结构材料,添加Si有望提高其综合力学性能。以高能球磨粉末为原料,采用放电等离子烧结技术制备了WMoNbCrTiSix(x=0、0.1、0.25和0.5)高熵合金,研究Si含量对其微观组织和力学性能的影响。结果表明:加入Si后高熵合金的组织由BCC固溶体、Laves相和硅化物组成。当x=0.1时,Si主要形成Ti5Si3,当x=0.25时,大部分Si与Ti形成Ti5Si3,少部分Si与Nb形成Nb3Si,当x=0.5时,Si主要形成Ti5Si3、Nb3Si和Cr3Si。当x从0增加到0.5时,WMoNbCrTiSix高熵合金的硬度由9.84 GPa增加到13.46 GPa,断裂韧性从6.68 MPa·m1/2下降到4.72 MPa·m1/2。WMoNbCrT...  相似文献   

13.
郝文俊  孙荣禄  牛伟  李小龙  谷米  左润燕 《表面技术》2021,50(8):343-348, 381
目的 研究Si含量对CoCrFeNi系高熵合金涂层组织、物相、显微硬度及耐蚀性能的影响.方法 通过激光熔覆技术在45钢基材上制备CoCrFeNiSix(x为物质的量之比,x=0.0,0.5,1.0,1.5,2.0)高熵合金涂层,使用扫描电镜、X射线衍射仪、显微硬度仪、电化学工作站对涂层的显微组织、物相组成、显微硬度、耐蚀性能、腐蚀形貌进行分析研究.结果 CoCrFeNi高熵合金涂层为单一的fcc相,之后随着Si含量的提升,涂层向bcc相转变,当x=2.0时,全部转化为bcc相.涂层的微观组织以等轴晶与枝晶为主,当Si含量较少时,Si元素主要在晶界中偏析,随着Si含量的增加,过多的Si会固溶到晶粒内部.涂层的平均显微硬度随着Si含量的升高而增加,CoCrFeNiSi2.0可达到566.5HV0.5.在3.5%NaCl溶液中,涂层的腐蚀电位随Si含量的增加而变大,CoCrFeNiSi2.0较CoCrFeNiSi0.0的腐蚀电位正移约160 mV,腐蚀电流密度从1.17×10-6 A/cm2减小到6.06×10-7 A/cm2,耐蚀性提高.当Si含量较低时,涂层表面出现连续大面积腐蚀痕迹,随着Si含量的增加,表面腐蚀以点蚀为主.结论 在CoCrFeNi系高熵合金涂层中添加Si元素,可以促进bcc相的生成,提高涂层的显微硬度,同时可以有效抑制合金涂层的腐蚀倾向,以及减缓合金涂层的腐蚀速率,提高耐蚀性能.  相似文献   

14.
研究了AlxMo0.5Nb0.5Ta0.5Ti1.5难熔高熵合金的微观组织结构和力学性能,从Al元素在该体系合金中固溶强化作用以及Al和过渡族元素的强键合作用两方面对合金性能变化进行了分析。结果表明,Al含量在0~0.75范围内,合金均呈BCC结构类型,随Al含量增加,合金的树枝状凝固组织逐渐细化,硬度增加。在室温条件下,低Al含量(x≤0.3)合金在压缩应变达70%不发生断裂,高Al含量(x≥0.4)合金则表现出明显脆性。在高温条件下,随Al含量增加,合金体系理论熔点降低,合金高温下压缩强度降低程度越来越大。  相似文献   

15.
目的研究Si含量对激光熔覆FeCoCr_(0.5)NiBSi_x高熵合金涂层组织结构、硬度和耐磨性的影响。方法采用激光熔覆技术,在45钢基体表面制备了不同Si含量的FeCoCr_(0.5)NiBSi_x(x取0,0.1,0.2,0.3,0.4)系列高熵合金涂层,分析涂层的宏观形貌、微观组织及相结构,测试涂层的硬度,通过摩擦磨损实验测试涂层的耐磨性。结果熔覆态高熵合金涂层均由FCC相和M2B相组成,显微组织包括先共晶组织和共晶组织。随着Si含量的增加,FCC相增多,M_2B相减少,共晶组织由蜂窝状到颗粒状,然后消失。高熵合金涂层的平均硬度随着Si含量的增加而先降低后增加,FeCoCr_(0.5)NiBSi0.3的硬度值最小(613HV),FeCoCr_(0.5)NiBSi_(0.4)的硬度值最高(820HV)。高熵合金涂层的磨损体积随着Si含量的增加而先增大后减小,FeCoCr_(0.5)NiBSi_(0.3)的磨损体积最大(0.00406mm3),FeCoCr_(0.5)NiBSi0.4的磨损体积最小(0.00233mm3)。结论随着Si含量增加,涂层的M2B相减少,共晶组织逐步消失,耐磨性则先降低后提高。耐磨性能最好的是FeCoCr_(0.5)NiBSi_(0.4)高熵合金涂层。  相似文献   

16.
采用真空电弧熔炼工艺制备了不同Al含量的AlxMo0.5NbTiVSi0.2(x=0.5,0.8,1.0,摩尔比)难熔高熵合金。研究了合金的相组成、微观组织、密度和力学性能。结果表明,AlxMo0.5NbTiVSi0.2高熵合金的微观组织为典型的树枝晶结构,均由BCC固溶体相和M5Si3金属间化合物相组成。Al含量的增加并未使得合金的相组成发生改变。合金BCC基体相富集Al、Mo和V元素,M5Si3相富集Ti和Si元素,Nb元素在两相中分布较为均匀。随Al含量增加,合金的密度从6.18 g/cm3降至5.86 g/cm3,硬度提升了13.7%,压缩屈服强度增加约332 MPa,增幅达到37%,抗压强度从1 073 MPa提高到1 457 MPa,断裂应变从13.6%增加到14.4%。合金力学性能的提升主要是通过固溶强化、细晶强...  相似文献   

17.
钛合金表面激光熔覆AlBxCoCrNiTi高熵合金涂层的组织与性能   总被引:2,自引:2,他引:0  
目的研究AlB_xCoCrNiTi(x=0、0.5、1)高熵合金涂层的组织及性能,提高钛合金表面硬度及耐磨性。方法采用激光熔覆技术在TC4钛合金表面制备出AlB_xCoCrNiTi高熵合金涂层,运用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电子探针(EPMA)等材料分析手段,研究了B含量对高熵合金涂层形貌、组织结构、成分的影响,并采用维氏硬度计以及摩擦磨损试验检测了熔覆涂层的硬度和耐磨性能。结果高熵合金涂层与基体的整体结合形貌良好。未添加B的高熵合金涂层主要由BCC相和晶体结构类似(Co,Ni)Ti_2相组成。随着B的加入,高熵合金涂层的晶粒得到细化,BCC相含量增加,(Co,Ni)Ti_2相含量有所减少,且熔覆层原位生成了TiB_2硬质相,TiB_2硬质相含量随B含量的增加而增加。熔覆涂层的硬度和耐磨性与B含量呈正相关关系,AlB_1CoCrNiTi高熵合金涂层的平均显微硬度最大,为814HV,且AlB_1CoCrNiTi高熵合金涂层的磨损量最小,其耐磨性约为未添加B的高熵合金涂层的7倍。结论 B含量的增加,有助于改善AlB_xCoCrNiTi高熵合金涂层的摩擦学性能,AlB_xCoCrNiTi高熵合金涂层有效提高了钛合金表面的硬度及耐磨性能。  相似文献   

18.
《铸造技术》2017,(12):2829-2831
制备了Si含量分别为0.2%、0.4%、0.6%、0.8%和1.0%的汽车发动机用6061铝合金,研究了时效态的金相组织,并对其室温拉伸性能和维氏硬度进行了测试。结果表明,拉伸强度呈现随Si含量增加先升高后降低的趋势,屈服强度和维氏硬度随着Si含量的增加而逐渐升高,伸长率随着Si含量的增加而逐渐下降。当Si含量为0.6%时,6061铝合金具有最优的力学性能。  相似文献   

19.
通过XRD、SEM、EDS分析及显微硬度测试,研究了不同Ti含量的AlCoCrNiSiTix高熵合金微观组织结构与力学性能。结果表明:AlCoCrNiSiTix高熵合金主要以bcc1+bcc2两相共存,其中bcc1为AlNi固溶体,bcc2为CrSi固溶体。随着Ti元素的添加,合金中出现了少量Ni3Ti金属间化合物;合金铸态组织形态呈树枝晶状,微观组织中Al、Ni、Ti主要存在于枝晶内,Cr、Si主要偏析于枝晶间;同时合金硬度显著提高。  相似文献   

20.
研究了Si含量分别为1.0%、1.1%、1.3%和1.5%的Al-Mg-Si系合金的热裂倾向以及力学性能,采用金相显微镜和扫描电镜观察了不同Si含量合金的微观组织.结果表明,随着Si含量的增加,合金在晶界处的共晶组织增多,热裂倾向减少,并且合金的硬度和抗拉强度随之增加,但伸长率降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号