首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以控制结晶法合成的球形Ni0.8Co0.15Al0.05(OH)2.05为前驱体,采用加压氧化法制备锂离子电池正极材料LiNi0.8Co0.15Al0.05O2。利用X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试等方法对该材料的结构、形貌及电化学性能进行表征。考察氢氧化锂与前驱体物质的量之比(锂配比)、在煅烧过程中的压力、温度和时间等因素对LiNi0.8Co0.15Al0.05O2材料结构及性能的影响。结果表明:锂配比为1.02时,在0.4 MPa氧气压力下,于700℃煅烧10 h制备的材料具有最完善的结构和最好的电化学性能;在2.8~4.3 V电压范围内,以0.2 C进行充放电,首次放电比容量达到190.1 mA.h/g,50次循环后容量保持率为90.2%,同时显示出良好的倍率性能和高温性能。  相似文献   

2.
采用草酸盐共沉淀法合成了层状LixNi0.5Mn0.5O2(x=1.00,1.05,1.10,1.15)正极材料,并研究了配锂量x为1.0,1.05,1.0和1.15时对终产物的结构及电化学性能的影响。采用X射线衍射(XRD)表征LixNi0.5Mn0.5O2材料的结构,使用充放电实验、EIS及CV研究了LixNi0.5Mn0.5O2的电化学性能。结果表明,x为1.10时材料具有良好的层状特征,且材料中锂/镍的混排程度最小。x为1.10时材料内阻小,有更好的循环稳定性和可逆性。在测试温度55℃和电压2.0~4.5V范围内,材料的首次放电比容量达到了239.6mAh/g,在循环20周后,容量保持率为98.2%。  相似文献   

3.
锰酸锂被认为是取代商品锂离子电池正极材料LiCoO2的候选材料,以二氧化锰、碳酸锂为原料,在空气气氛下进行烧结,控制烧结温度和时间,制备锂离子电池正极材料锰酸锂。用X射线衍射仪、电子扫描电镜对产物的结构特征、微观表面形貌和恒流充放电性能进行了表征。结果表明:所制得的正极材料为尖晶石型锰酸锂,结晶度高、无杂质相、材料颗粒的粒径均匀,首次充放电比容量为117.3 mAh/g(0.2C,3.3~4.4V);50次循环后,放电比容量为107.9 mAh/g,不可逆容量损失为9.4 mAh/g,比容量保持率为92.0%,得到了很好的综合电化学性能。  相似文献   

4.
反应物中锂元素的量对LiFePO4/C电化学性能的影响   总被引:1,自引:0,他引:1  
以Fe2O3和LiH2PO4为原料,葡萄糖为碳源,采用碳热还原法合成了LiFePO4/C正极材料,考察了反应物中锂元素的量对正极材料LiFePO4/C电化学性能的影响。用X射线衍射、扫描电镜(SEM)和恒电流充放电测试和循环伏安法对正极材料的结构、形貌以及电化学性能进行了研究。结果表明:当反应物中额外添加锂元素的量是理论量的10%时,制得的正极材料的电化学性能最佳,在0.2和1C(1C=170mA/g)的充放电倍率下,首次放电比容量分别为156.3和137.5mAh/g,经过20次充放电循环后,容量基本保持不变。  相似文献   

5.
采用高温固相法合成Ni2+、Mn2+共掺杂的LiFe0.95Ni0.02Mn0.03PO4/C正极材料。通过X射线衍射(XRD)、扫描电镜(SEM)、电化学阻抗谱(EIS)和电化学测试技术等研究材料的结构、形貌和电化学性能。结果表明:Ni2+和Mn2+共掺杂后的LiFe0.95Ni0.02Mn0.03PO4/C材料仍然具有LiFePO4/C橄榄石型晶体结构,且掺杂后材料的放电比容量和循环性能都得到显著改善。在0.1C和1C下放电时,未掺杂LiFePO4/C的首次放电比容量仅分别为153和140 mA.h/g,而Ni2+、Mn2+共掺杂的LiFe0.95Ni0.02Mn0.03PO4/C材料首次放电比容量分别为165和145 mA.h/g,且在1C下循环100次后容量保持率仍然为97.6%。  相似文献   

6.
采用溶胶-凝胶法合成锂离子电池正极材料Li_2FeSiO_4/C,研究煅烧温度对材料结构和电化学性能的影响。通过X射线衍射(XRD)、扫描电镜(SEM)、电化学阻抗测试(EIS)和充放电测试等方法对不同煅烧温度下合成的Li_2FeSiO_4/C材料的结构、表观形貌及电化学性能进行表征。结果表明:在650℃下合成的Li_2FeSiO_4/C具有良好的电化学性能,0.1C倍率下的首次放电比容量达到159.1(m A·h)/g,50次循环后容量保持率高达92.1%。  相似文献   

7.
Li2MnSiO4/C复合正极材料的合成及电化学性能   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法合成了Li2MnSiO4/C复合正极材料,并用TG-DTA,XRD和电化学性能测试对材料进行了表征.前驱体的TG-DTA曲线表明,合成Li2MnSiO4时烧结温度应高于500℃.XRD测试表明Li2MnSiO4具有正交结构,对应Pmn21空间群.将Li2MnSiO4/C组装成扣式电池进行电化学测试的结果表明,600℃烧结10h所得样品性能最好,首次放电比容量达到124.2mAh·g-1,为理论比容量的74.5%;循环30次后放电比容量为71.5mAh·g-1.  相似文献   

8.
通过共沉淀法合成钠离子(Na+)掺杂的高稳定性Li1-xNaxNi1/3Co1/3Mn1/3O2(NCM-Na)正极材料。首先论证采用低冰镍提取镍作为合成材料镍源的可行性。其次,在化学试剂合成的NCM(Ni,Co,Mn)材料中预先引入最优含量的Na+,占据部分Li+位点,实现具有更低Li+/Ni2+阳离子混排的稳定结构,从而提高其电化学性能。结果表明,当Na+掺杂量为1%(质量分数)(x=0.01)时,获得的NCM-Na正极材料在1C电流密度下,循环100次后容量保持率从76.84%提高至89.21%。特别是在5C大电流密度下,循环200次后,可逆放电比容量依然维持在110 mA·h·g-1。这为杂原子掺杂耦合材料化冶金开发低成本、高性能锂离子电池三元LiNi1/3Co1/...  相似文献   

9.
采用溶胶-凝胶法制备了LiFePO4/C正极材料.采用X射线衍射(XRD)、扫描电镜(SEM)和电化学手段对材料进行了结构表征和性能测试.研究了其前驱体体系pH值对材料性能的影响.结果表明:当前驱体体系pH值为8.4时,LiFePO4/C正极材料具有最佳的电化学性能.在0.1C倍率下充放电,磷酸铁锂首次放电比容量为16...  相似文献   

10.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并考察了烧结温度对材料结构、表面形貌和电化学性能的影响.XRD和SEM测试结果表明,900℃下烧结得到的样品是粒径在0.3~0.5 μm范围的球形粒子,具有最佳的阳离子有序度;充放电测试结果表明,其在0.1C倍率下首次放电容量达到148.8...  相似文献   

11.
以聚丙烯酸为碳源,用低温还原-插锂与聚合物高温分解相结合的方法制备LiFePO4/C复合正极材料;FePO4被还原插锂与含碳聚合物化学包覆同时进行,简化了制备工艺,降低了制备成本。经X射线粉末衍射(XRD)、扫描电镜(SEM)以及恒电流充/放电测试,研究了不同焙烧温度对合成产物的物相、晶胞参数、表面形貌及电化学性能的影响。研究发现,焙烧温度为600℃时,合成产物的0.1 C倍率放电具有最高的放电容量和最好的循环稳定性。在0.1 C下LiFePO4/C复合材料的首次放电容量高达141.3 mAh/g,库伦效率为98.0%,100次循环后,其容量保持率为108.3%。  相似文献   

12.
溶胶-凝胶法制备LiFePO_4/C复合材料及其性能   总被引:3,自引:1,他引:2  
为了提高LiFePO4的电化学性能,以柠檬酸为络合剂和碳源,采用溶胶-凝胶法制备LiFePO4/C复合正极材料。采用FTIR和XRD等对前驱体及产物进行表征,并测试样品的电化学性能。结果表明:经700℃烧结10h所得产物具有单一的橄榄石型晶体结构,碳含量为10.81%(质量分数)。样品在0.1C下首次放电比容量为127.1mA·h/g,在0.2C、0.5C、1C下首次放电比容量分别为106.1、83.3、70.6mA·h/g。该样品在0.1C下经过20次循环后,容量还保持为126.3mA·h/g,衰减仅为0.035%。循环伏安和交流阻抗测试表明该材料具有较好的电化学性能。  相似文献   

13.
采用LiAc·2H2O作为锂源,利用熔盐碳热还原方法在较低的烧结温度和较短的烧结时间内(650℃,4h)合成纯相LiFePO4/C材料。扫描电镜照片显示这种方法合成的材料粒径大约为1μm,小于用Li2CO3作为锂源合成的材料。电化学测试表明,采用LiAc·2H2O作为锂源合成的材料表现出了高的放电容量和良好的倍率循环性能:在0.5C和5C倍率下,其首次放电容量分别为148mA.h/g和115mA.h/g;50次循环后,容量保持率分别为93%和89%。  相似文献   

14.
以有机-水为混合溶剂,采用溶胶-凝胶法制备锂离子电池正极材料Li3V2(PO4)3/C。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电以及循环伏安(CV)测试等方法,研究产物的结构形貌及电化学性能。结果表明:溶剂对材料的晶型结构没有影响,对颗粒的形貌影响较大;以1,2-丙二醇-水为溶剂的样品呈薄片状和针状;在3.0~4.5 V电压范围内,Li3V2(PO4)3/C的0.1C首次放电比容量为132.89 mA.h/g,10C首次放电比容量达125.42 mA.h/g,循环700周后容量保持率为95.79%,具有良好的倍率性能与循环性能;而在3.0~4.8 V电压范围内倍率性能较差。  相似文献   

15.
以V2O5、NH4H2PO4、Li2CO3和C6H8O7·H2O为原料,采用溶胶-凝胶法在600~800℃下合成了锂离子电池正极材料Li3V2(PO4)3/C,利用XRD和蓝电测试系统对材料进行表征,研究了合成温度对材料电化学性能的影响。结果表明:650℃下合成产物中开始出现Li3V2(PO4)3相,700、750和800℃下合成纯相的Li3V2(PO4)3正极材料;750℃合成的样品在放电电流密度为0.1C下首次放电容量为123.5mAh·g-1,并且随电流密度增大到10C时也有较好的循环稳定性。  相似文献   

16.
采用X射线衍射和电化学方法,研究了正极材料Li3Ni0.1V1.9(PO43)的结构和电化学性能。结果表明:Li3Ni0.1V1.9(PO43)具有单斜晶系结构。在室温下,以0.1C倍率放电时Li3Ni0.1V1.9(PO4)3的初始比容量为115mAh/g,从0.1C增加到0.4C经过60次循环后,比容量保持率为97.3%,而未掺杂镍的Li3V2(PO4)3,初始比容量为129mAh/g,60次循环后,比容量保持率仅为69.7%。循环伏安和交流阻抗测试表明,Li3Ni0.1V1.9(PO4)3有较低的极化电阻和较好的可逆性。  相似文献   

17.
以共沉淀法制备的球形Ni0.8Co0.1Mn0.1(OH)2和Li OH·H2O为原料,研究烧结温度对LiNi0.8Co0.1Mn0.1O2材料形貌、结构以及材料循环性能和倍率性能的影响。SEM和XRD结果表明:温度对材料形貌和结构有较大的影响,控制适当温度既能保证材料具有良好的形貌,也能抑制材料中锂镍的混排。电化学测试结果显示,当烧结温度从700℃升高至750℃时,材料性能逐渐提高,但是温度过高会恶化材料的性能。750℃和780℃烧结材料的循环性能几乎一致,200次循环后容量保持率为71.9%,但780℃烧结材料的倍率性能低于750℃材料的,其原因归结于温度过高,锂镍的混排加剧。在小电流充放电时,对材料性能影响有限,但是在大电流充放电时,3a位的Ni2+将严重阻碍锂离子的扩散。  相似文献   

18.
通过溶胶-凝胶法合成了含铝富锂正极材料xLi2MnO3·(1-x)LiNi0.8Co0.15Al0.05O2,探讨了化学组分(x=0.5,0.6,0.7,摩尔分数)和煅烧温度(850,900,950℃)对材料形貌、结构和性能的影响。采用XRD、SEM和电池充放电测试仪对材料进行物理表征和电性能测试。结果表明:所制备的材料具有典型的α-NaFeO2层状结构。当x=0.6、煅烧温度为900℃时,所合成的材料具有较好的形貌和优良的电化学性能;在2.0~4.6 V、0.1C充放电条件下,0.6Li2MnO3·0.4Li Ni0.8Co0.15Al0.05O2的首次放电比容量可达229.9 mA·h/g,且首次库仑效率为80.0%;在0.5C倍率下循环100次后,其放电比容量仍为192.7 mA·h/g,容量保持率达83.8%,显示了优良的循环性能。此外,材料显示了良好的倍率性能,在2.0C倍率下,其放电比容量仍为173.1 mA·h/g。  相似文献   

19.
钴酸锂的再生及其电化学性能   总被引:3,自引:0,他引:3  
采用提取的含少量Co3O4的LiCoO2为原料,在不同温度下合成正极材料LiCoO2,烧结时间为12 h,并采用XRD和SEM技术研究合成的LiCoO2的晶相结构与微观形貌。结果发现:烧结温度对LiCoO2的晶体结构影响较大,烧结温度越高,LiCoO2的层状结构发育越完整。循环伏安曲线很好地反映了再生LiCoO2的脱/嵌锂行为。将LiCoO2样品做成电池进行电化学检测,结果发现,烧结温度为850℃的样品首次放电容量为151mA.h/g,30次循环之后,放电容量仍有141mA.h/g,表现出良好的电化学性能。  相似文献   

20.
采用流变相法合成得到Li_(1.2+x)Ni_(0.1)Co_(0.2)Mn_(0.05)O_2(x=0, 0.036, 0.060, 0.096),探讨过锂量对结构和电化学性能的影响。X射线衍射(XRD)对样品进行结构分析证明所有样品具有典型的α-NaFeO_2结构和较小的阳离子混排度。扫描电镜(SEM)对样品进行表征证明不同过锂量的材料,颗粒相对均匀,表面光滑。电化学性能测试结果表明:最佳过锂量为x=0.036时,正极材料Li_(1.236)Ni_(0.1)Co_(0.2)Mn_(0.5)O_2在0.05C、2~4.8V测试条件下进行电化学性能测试,25和55℃下该材料初始放电容量分别为215.3和297.1 mAh·g-1,首次库伦效率分别为66.6%和84.6%,0.2 C下循环50次后容量保持率分别为89.0%和87.8%,且x=0.036时该材料具有最佳的倍率性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号