首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
针对光伏输出功率非线性、波动大、不稳定等特征引起光伏功率短期预测不精确的问题,本文提出了一种基于相似日聚类和利用共轭梯度法(CG)改进深度信念网络(DBN)的组合模型预测方法。首先利用FCM聚类算法将原始数据按照隶属度进行相似日聚类,随后根据类别进行CG-DBN预测模型的建模,最后利用该模型进行光伏输出功率的短期预测。本文将方案应用于浙江龙游发电站,并将预测结果与传统预测模型进行了比较。最终得出,FCM和CG-DBN组合预测模型在光伏功率短期预测中的性能优于其他模型。  相似文献   

2.
光伏发电功率预测对电网的稳定性和安全性具有十分重要的意义。提出了基于相似日和小波神经网络的预测方法,根据相似日理论通过灰色关联系数法选取历史相似日,将选取的6个相似日的发电数据作为模型的输入变量,同BP神经网络、小波神经网络的预测结果进行对比和误差分析。以某光伏电站历史发电数据为例,验证算法的可行性。  相似文献   

3.
光伏电站输出功率的不确定性对电网的运行调度产生了严重影响。基于模糊均值聚类(fuzzy C-means,FCM)和长短期记忆网络(long short-term memory networks,LSTM),提出了一种光伏功率超短期预测方法。首先,通过滑动时窗将历史数据划分为时序片段,将功率波动特性以时段为样本进行分析;然后,定义了3种特征指标提取波动规律,采用FCM方法进行时序片段聚类,在聚类后重构数据集,结合LSTM网络,建立光伏功率预测模型;最后,采用澳大利亚光伏电站实测数据集验证所提方案的聚类性能与预测性能。仿真结果表明,所提方法具有更高的聚类准确性和预测精确度。  相似文献   

4.
光伏发电的功率预测是电网运行调度普遍关注的问题。光伏电站大量历史数据的挖掘和利用为波动的光伏功率建模提供了新方向。在采用气象相似日进行光伏发电功率预测的基础上,引入了相似日的光伏发电功率预测误差对预测日的光伏功率进行校正,更进一步提高了光伏发电功率预测的准确性。  相似文献   

5.
《电网技术》2021,45(4):1258-1264
光伏发电功率超短期预测对减小光伏并网对电网冲击及维持电网安全运行具有重要意义。提出一种基于数字孪生的光伏发电功率超短期预测机制,通过构建数字孪生体进行实时、高精度的光伏功率预测。首先根据GA-BP神经网络(geneticalgorithm-backpropagationneuralnetwork)构建光伏发电功率预测虚拟模型,并通过多维度的传感器采集光伏电池以及周围环境的各项孪生数据,同时更新历史数据库。然后以采集到的孪生数据为基础进行功率预测并得到初步预测结果。最后通过相似气象搜索,得到相似情况下的实际功率值和当时的预测功率,进而修正初步预测结果,得到最终预测功率。仿真算例结果表明,所提方法能有效提高光伏发电输出功率超短期预测精度。  相似文献   

6.
提升精细化的光伏预测技术对电力系统的实时调度运行至关重要。它不仅依赖于预测模型的优劣,还依赖于训练样本日与预测日的相似程度。提出一种基于MIE-LSTM的短期光伏功率预测方法。在建立基于互信息熵(Mutual Information Entropy, MIE)的相关性衡量指标基础上,计算出光伏功率与各气象因素间的互信息熵,从而对高维气象数据进行降维处理。然后,利用历史日与预测日多维气象因素间的加权互信息熵筛选出相似日样本。最后,通过长短期记忆(Long-short Term Memory, LSTM)神经网络预测模型训练并建立气象因素与光伏出力之间的映射关系。通过对某实测光伏电站不同天气类型下的发电功率进行预测分析,验证了新方法能够达到理想的预测精度。  相似文献   

7.
针对光伏发电的间歇性和波动性问题,采用基于BP-ANN建立光伏发电系统输出功率超短期预测模型,利用输出功率的历史值、过往及预测日气象信息,对输出功率进行预测,并提出适用的预测流程及预测误差评估方法。实际应用以及与实时监测数据对比,表明该方法方法误差较小,合格率较高,能够满足应用的要求。  相似文献   

8.
由于历史数据和天气因素对光伏出力预测的影响较大,提出了一种日特征相似度与形状相似度相结合的方法,分时段地预测光伏发电功率。该方法首先采用欧式距离法对气象类型进行细分,然后在不同时间段中分别利用两种相似日选取算法选取历史相似日,再利用其对应时段的历史功率值及气象数据,采用BP神经网络对预测日相应时段的功率进行预测,结果表明该方法的预测精度有明显提高。  相似文献   

9.
通过分析当前国内光伏发电工程的特点,提出一种基于网络服务器的光伏发电短期功率预测系统,充分利用现有监控终端的数据上传能力,结合多数据终端上传的海量数据优化智能算法。此预测系统可以为多个光伏监控系统分时复用,节约了硬件资源;同时预测软件根据其获得的多系统数据特点,利用不同光伏发电系统的数据进行交叉优化,有效提高了预测准确率。  相似文献   

10.
准确预测光伏发电功率对电力系统运行调度至关重要。提出一种基于Spearman相关系数和分时长短期记忆网络的光伏发电功率预测方法。首先利用Spearman相关系数分析每个时刻下影响光伏发电功率的因素,选取相关度高的影响因素作为长短期记忆网络模型的输入变量;然后,对每个时刻建立一个基于长短期记忆网络的预测模型,实现分时光伏发电功率的预测。最后,利用实际光伏发电站的历史发电功率和数值天气预报数据进行案例分析。结果表明,所提方法比单一长短期记忆网络预测模型具有更高的预测精度。  相似文献   

11.
考虑到光伏输出功率的随机性和波动性,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化深度信念网络(Deep Belief Network,DBN)的光伏短期发电出力预测方法。首先利用改进粒子群算法确定DBN神经网络最优的初始权值,建立初始DBN网络。其次,确定预测日后,利用灰色关联度法选出与预测日气象特征相似度高的日期。将这些日期的气象数据和历史发电数据作为训练集对初始DBN网络进行训练,建立预测模型。最后仿真结果表明,所用模型相比于传统的DBN神经网络具有更高的预测精度。  相似文献   

12.
提出了相似日和动量优化BP神经网络的光伏短期功率预测方法,采用与输出功率强相关的辐照度作为相似变量选取相似日,通过动量法优化并以相似日历史数据和气象信息作为训练样本建立BP神经网络预测模型。以新疆某光伏电站的实际运行数据进行验证分析,结果表明该方法在晴天和非晴天天气环境下能够达到预测精度,验证了所提模型和算法的准确性和有效性。  相似文献   

13.
针对光伏发电功率存在随机性和波动性较强、预测精度较低的问题,提出了一种基于变分模态分解(variationalmodedecomposition, VMD)和改进松鼠觅食算法优化核极限学习机(improvedsquirrelsearchalgorithm optimization kernel extreme learning machine, ISSA-KELM)的预测模型。首先,利用高斯混合模型(Gaussian mixture model, GMM)将光伏发电功率数据进行聚类,得到不同天气类型下的相似日样本。其次,利用VMD对原始光伏发电功率序列进行平稳化处理,得到若干个规律性较强的子序列。然后,对不同子序列构建KELM预测模型,并使用ISSA优化KELM的核参数和正则化系数。最后,将不同子序列的预测值进行重构,得到最终预测结果。结合实际算例,结果表明:所提出的VMD-ISSA-KELM模型在不同天气条件下均能得到满意的预测精度,且明显优于其他模型,验证了其有效性和优越性。  相似文献   

14.
为了充分利用电网自身的海量历史数据进行光伏功率预测,提出一种宽度&深度(Wide&Deep)框架下融合极限梯度提升(XGBoost)算法和长短时记忆网络(LSTM)的Wide&Deep-XGB2LSTM超短期光伏功率预测模型.对历史数据进行特征提取,获得时间、辐照度、温度等原始特征,在此基础上进行特征重构,通过交叉组合...  相似文献   

15.
提高光伏发电功率预测的精度对于保证电网的安全稳定运行、提高光伏资源的开发和利用率具有重要的意义。文中提出了一种基于天气相似度以及改进布谷鸟算法优化Elman神经网络的光伏发电短期功率预测模型。首先在选取相似日上,提出一种基于距离和角度趋势的相似度计算方法,选出与待预测日相似度更高的相似日。其次,利用改进后的布谷鸟算法对Elman神经网络的权值和阈值进行优化并构建光伏发电短期功率预测模型。最后将文中提出的光伏发电预测模型与传统Elman神经网络模型的预测结果及实际输出值进行比较,结果表明改进布谷鸟算法优化Elman神经网络的光伏发电短期功率预测模型预测精度更高。  相似文献   

16.
针对风电场实际风速和风电功率序列的波动性、间歇性等特点以及RBF神经网络结构一旦确定隐节点个数就不可变等缺陷,提出了基于小波分析和最小资源分配网络的超短期风电功率预测方法。首先将历史风速和风电功率序列进行小波去噪及多频分解,得到多组高频信号和一组低频信号。然后对各频信号分别建立神经网络预测模型对未来4 h风电功率进行超短期预测。最后将各预测结果通过小波重构得到最终的超短期预测功率。实验结果证明,该方法能有效提高预测精度。  相似文献   

17.
基于风光混合模型的短期功率预测方法研究   总被引:1,自引:1,他引:1       下载免费PDF全文
准确地预测风力发电及光伏发电的输出功率对提高风光互补供电系统的调度质量具有重要意义。建立了基于BP神经网络的风光混合预测模型,将现有技术中分两次预测的风电功率和光伏功率采用同一个预测模型,同时实现整个区域风电场及光伏电站的输出功率预测,在简化预测方法的同时提高预测准确度。通过某海岛的风电及光伏电站的实际数据验证,计算分析了预测误差。结果表明该方法具有较高的预测精度,对风光混合的功率预测具有一定的学术价值和工程实用价值。  相似文献   

18.
光伏发电具有典型的间歇性、波动性等特点。准确预测光伏出力对电网调度、电网规划、提升新能源发电竞争力具有重要意义。提出了一种基于改进灰色BP神经网络的多模型组合光伏出力预测方法,采用常规GM(1,1)模型、幂函数变换GM(1,1)模型、基于残差修正的GM(1,1)模型以及等维新息GM(1,1)四种模型,利用BP神经网络对光伏出力的单一灰色预测结果进行优化组合输出,并根据输出值和期望值的偏差自动调整组合权值。该方法通过将多个单一预测结果组合成样本训练BP神经网络来获得较优权系数,避免了数值求解权系数的复杂过程,能够得到更为精确的预测结果。采用湖北某地光伏系统实际出力数据对该预测方法进行了验证。计算结果表明该基于改进灰色BP神经网络组合的光伏出力预测方法能够明显提高光伏出力预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号