首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The numerical approaches used for the solution of governing equations of fluid flow are dictated highly by the topology of the domain discretization. Two of the most commonly used discretization approaches are the structured and unstructured topologies. This paper describes the discretization of the domain using generalized elements with an arbitrary number of nodes to combine the advantages of both the structured and unstructured methodologies. Numerical algorithms for the solution of the governing equations for generalized mesh, an approach for handling mesh movement applicable to rotating machineries, and the application of this framework for overset meshes to handle moving body problems are discussed. A library-based approach has been adopted for the implementation of overset capability for the framework. The results from the application of this framework for various applications are presented.  相似文献   

2.
A simple approach for the simulation of bipedal locomotion is presented. It is based on a kinematically driven rigid body dynamics simulation. As inputs, our system uses a 14-DOF simplified human body model, and the instantaneous walking direction and the gait length. From these parameters, the trajectories of the left and right feet are computed over time, using a purely kinematical recipe. Optionally, trajectories of other body parts (head, shoulders, hips, hands, knees, etc.) may be derived from a simple kinematic body model. Using these additional trajectories provides for increased control over the motion, adding extra kinematic constraints to the dynamical system. The trajectories, together with optional force fields (gravity etc.), serve to drive the motion of the articulated human body model. This means that for those points in the body that have not been specified kinematically, a rigid body dynamics calculation is used to describe their motion over time. An implementation of these ideas turns out to allow a frame update rate of about 20 Hz on a personal IRISTM workstation, which is sufficiently fast for real-time interaction.  相似文献   

3.
本文将多无人直升机编队控制分解为若干对具有主从结构的无人直升机相对状态控制问题,并提出利用相对动力学建模方法设计编队控制器.无人直升机相对动力学由6自由度空间刚体相对动力学和单体直升机飞行动力学两部分组成.基于这种相对动力学模型利用反馈线性化和扩展高增益观测方法设计具有内外环阶梯结构的控制器.最后,通过仿真验证了这种方法能够跟踪给定期望值并具有一定扰动抑制能力.  相似文献   

4.
This paper addresses the problem of sensor fault detection for a wide class of Unmanned Vehicles (UVs). First a general model for UVs, based on the dynamics of a 6 Degrees Of Freedom (6-DOF) rigid body, subject to gravity and actuation forces, is presented. This model is shown to satisfy the necessary conditions to the existence of a non-linear observer (Thau) when proper assumptions for the actuation forces are made. The observer can thus be used to generate diagnostic residuals inside a Fault Detection (FD) system. Finally, the proposed approach is customized for sensor fault detection on an unmanned quad-rotor vehicle, and simulation results show the effectiveness of the adopted solution.  相似文献   

5.
Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler–Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links.  相似文献   

6.
A computer program based on a molecular dynamics–continuum hybrid method has been developed in which the Navier–Stokes equations are solved in the continuum region and the molecular dynamics in the atomistic region. The coupling between the atomistic and continuum is constructed through constrained dynamics within an overlap region where both molecular and continuum equations are solved simultaneously. The simulation geometries are solved in three dimensions and an overlap region is introduced in two directions to improve the choice of using the molecular region in smaller areas. The proposed method is used to simulate steady and start-up Couette flow showing quantitative agreement with results from analytical solutions and full molecular dynamics simulations. The prepared algorithm and the computer code are capable of modeling fluid flows in micro and nano-scale geometries.  相似文献   

7.
Recursive matrix relations for kinematics and dynamics analysis of a 2-DOF orienting gear train are established in this paper. The mechanism is a parallel system with five moving links and three bevel gear pairs controlled by two electric motors. Knowing the rotation motion of the end-effector, the inverse dynamic problem is solved using an approach based on the principle of virtual work and have verified the results in the framework of the Lagrange equations of the second kind. Finally, some graphs for the input angles of rotation, the forces and the powers of the actuators are obtained.  相似文献   

8.
This study develops a 6-DOF mathematical model for a robotic fish that considers surge, sway, heave, roll, pitch, and yaw. The model considers the conditions of a fish swimming in ocean current perturbations similar to the ocean current perturbations of the slender-body autonomous underwater vehicles. For swimming and turning behaviors, a nonlinear, dynamic, carangiform locomotion model is derived by using a planar four-link model. A 2-DOF barycenter mechanism is proposed to provide body stabilization and to serve as an actuating device for active control design. A barycenter control scheme is developed to change the center of gravity of the robot fish body by moving balancing masses along two axes. The projected torque on x and y axes propel pitch and roll angles to the desired settings. A Stabilizing controller, fish-tail mechanism, rigid body dynamics, and kinematics are incorporated to enable the fish robot to move in three dimensional space. Simulation results have demonstrated maneuverability and control system performance of the developed controller which is proposed to conduct path tracking of the robot fish as it swims under current perturbations.  相似文献   

9.
A novel algorithm for the solution of the inverse dynamics problem is presented and augmented to the solution of the equations of motion (EOM) for rigid multibody chains using explicit constraint components of force. The unified model corresponds to an optimal, strictly parallel, time, space, and processor lower bound solution to the dynamics of accelerated rigid multibodies, i.e., computation time of O(log2n) using O(n) processors for an n body system. Complex topological structures are supported in the form of multiple degree-of-freedom (DOF) joints/hinges, free-floating, hyper-branched, and/or closed-chain systems, with applications ranging from multibody molecular dynamics simulations and computational molecular nanotechnology, to real-time control and simulation of spatial robotic manipulators. In addition to the theoretical significance, the algorithms presented are shown to be very efficient for practical implementation on MIMD parallel architectures for large-scale systems.  相似文献   

10.
In this paper an analysis method for transient nonlinear fluid-structure interaction is presented. The fluid part of the problem is described in an ALE framework, where the incompressible Navier-Stokes equations are solved on a deforming domain to provide loading for the structure. The structure is handled in a flexible multibody framework, that has the advantage of having the gross motion described very efficiently when comparing to the use of a geometrically nonlinear finite element analysis for the structure. This combination of methodologies is particularly well suited for applications where the displacement of the structure can be described by small vibrations on top of very large rigid body motion. These types of problems can arise for instance in the analysis of wind turbine wings. Two small examples involving 2D flow are presented to illustrate the capabilities of the method proposed in this work.  相似文献   

11.
A three-dimensional computational finite element procedure for the vibration and dynamic stress analysis of the track link chains of off-road vehicles is presented in this paper. The numerical procedure developed in this investigation integrates classical constrained multibody dynamics methods with finite element capabilities. The nonlinear equations of motion of the three-dimensional tracked vehicle model in which the track link s are considered flexible bodies, are obtained using the floating frame of reference formulation. Three-dimensional contact force models are used to describe the interaction of the track chain links with the vehicle components and the ground. The dynamic equations of motion are first presented in terms of a coupled set of reference and elastic coordinates of the track links. Assuming that the structural flexibility of the track links does not have a significant effect on their overall rigid body motion as well as the vehicle dynamics, a partially linearized set of differential equations of motion of the track links is obtained. The equations associated with the rigid body motion are used to predict the generalized contact, inertia, and constraint forces associated with the deformation degrees of freedom of the track links. These forces are introduced to the track link flexibility equations which are used to calculate the deformations of the links resulting from the vehicle motion. A detailed three-dimensional finite element model of the track link is developed and utilized to predict the natural frequencies and mode shapes. The terms that represent the rigid body inertia, centrifugal and Coriolis forces in the equations of motion associated with the elastic coordinates of the track link are described in detail. A computational procedure for determining the generalized constraint forces associated with the elastic coordinates of the deformable chain links is presented. The finite element model is then used to determine the deformations of the track links resulting from the contact, inertia, and constraint forces. The results of the dynamic stress analysis of the track links are presented and the differences between these results and the results obtained by using the static stress analysis are demonstrated.  相似文献   

12.
The aim of this study is to investigate transonic flow over the axisymmetric rigid body of revolutions using matched asymptotic expansions of high Reynolds number flow. For this purpose the triple-deck model is employed. It allows to study the flow separation near a junction line where a circular cylinder is connected to a divergent conical body. It is found that in the axisymmetric transonic flow the interaction region is governed by the viscous-inviscid interaction process, where the axisymmetric Karman-Guderley equation in the inviscid part of the flow should be coupled with Prandtl’s boundary layer equations for the viscous sublayer. The coupled governing equations of the interaction region is solved using a semi-direct numerical method considering proper boundary conditions. Numerical results imply that incipience of separation may appear over the axisymmetric rigid body subject to body shape and transonic axisymmetric nature makes the flow much less prone to separation as compared to the two-dimensional flow.  相似文献   

13.
A methodology for the formulation of dynamic equations of motion of a serial flexible-link manipulator using the decoupled natural orthogonal complement (DeNOC) matrices, introduced elsewhere for rigid bodies, is presented in this paper. First, the Euler Lagrange (EL) equations of motion of the system are written. Then using the equivalence of EL and Newton–Euler (NE) equations, and the DeNOC matrices associated with the velocity constraints of the connecting bodies, the analytical and recursive expressions for the matrices and vectors appearing in the independent dynamic equations of motion are obtained. The analytical expressions allow one to obtain a recursive forward dynamics algorithm not only for rigid body manipulators, as reported earlier, but also for the flexible body manipulators. The proposed simulation algorithm for the flexible link robots is shown to be computationally more efficient and numerically more stable than other algorithms present in the literature. Simulations, using the proposed algorithm, for a two link arm with each link flexible and a Space Shuttle Remote Manipulator System (SSRMS) are presented. Numerical stability aspects of the algorithms are investigated using various criteria, namely, the zero eigenvalue phenomenon, energy drift method, etc. Numerical example of a SSRMS is taken up to show the efficiency and stability of the proposed algorithm. Physical interpretations of many terms associated with dynamic equations of flexible links, namely, the mass matrix of a composite flexible body, inertia wrench of a flexible link, etc. are also presented. The work has been carried out in the Dept. of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.  相似文献   

14.
In this paper a family of methods for multi-body dynamic simulation is introduced. Equations of motion are obtained using a set of Cartesian coordinates and projected onto a set of independent relative coordinates using the concept of velocity transformation. Open-chain systems are solved directly following either a fully recursive or a semi-recursive procedure. Closed-chain systems are solved in two steps; kinematic loops are opened by removing either some kinematic joints or a rigid body, and the resulting open-chain system is solved; closure-of-the-loop conditions are imposed by means of a second velocity transformation. The dynamic formalisms have been developed so as to handle both non-stiff and stiff systems. Non-stiff systems are solved by means of an Adams–Bashforth–Moulton numerical integration scheme, which requires the computation of the function derivatives. Stiff problems are integrated by using either BDF or NDF methods, which require the computation of the residual of the equations of motion and, optionally, the evaluation of the Jacobian matrix. The proposed algorithms have been implemented using an Object-Oriented Programming approach that makes it possible to re-use the source code, keeping programs smaller, cleaner and easier to maintain. Practical examples that illustrate the performance of these implementations are included. These examples have also been solved using a commercial multi-body simulation package and comparative results are included. In most cases, the algorithms here presented outperform those implemented in the commercial package, leading to important savings in terms of total computation times.  相似文献   

15.
Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to understand properties of the particulate matter. We propose a computational technique based on the direct numerical simulation of the particulate flows. The numerical method is based on the distributed Lagrange multiplier technique following the ideas of Glowinski et al. [16] and Patankar [30]. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. Mutual forces for the fluid-particle interactions are internal to the system. Particles interact with the fluid via fluid dynamic equations, resulting in implicit fluid-rigid body coupling relations that produce realistic fluid flow around the particles (i.e., no-slip boundary conditions). The particle-particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEM method of Cundall et al. [10] with some modifications using a volume of an overlapping region as an input to the contact forces. The method is flexible enough to handle arbitrary particle shapes and size distributions. A parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library, which allows handling of large amounts of rigid particles and enables local grid refinement. Accuracy and convergence of the presented method has been tested against known solutions for a falling particle as well as by examining fluid flows through stationary particle beds (periodic and cubic packing). To evaluate code performance and validate particle contact physics algorithm, we performed simulations of a representative experiment conducted at the U.C. Berkeley Thermal Hydraulic Lab for pebble flow through a narrow opening.  相似文献   

16.
对含Karnopp摩擦的柔性滑移铰系统进行动力学建模和仿真.将滑移铰中的滑块视为柔性体,滑道视为刚性接触面,考虑滑道与滑块之间的间隙.由于柔性滑块与滑道的接触状态和摩擦情况比较复杂,采用有限元方法建立了柔性滑块的力学模型,基于罚函数方法建立含Karnopp摩擦柔性滑移铰接触力模型,通过试算迭代法判断柔性滑块各节点的接触状态,基于KED方法和Newmark方法给出了含该滑移铰机械系统动力学方程的数值算法.最后,以含Karnopp摩擦的柔性滑移铰和驱动摆杆构成的机械系统为例进行动力学仿真,分析了其动力学特性,验证了本文给出的方法的有效性.  相似文献   

17.
Recursive relations in kinematics and dynamics of the symmetric spherical 3- parallel mechanism having three prismatic actuators are established in this paper. Controlled by three forces, the parallel manipulator is a 3-DOF mechanical system with three parallel legs connecting to the moving platform. Knowing the position and the rotation motion of the platform, we develop first the inverse kinematics problem and determine the position, velocity, and acceleration of each manipulator’s link. Further, the inverse dynamic problem is solved using an approach based on the principle of virtual work, but it has been verified using the results in the framework of the Lagrange equations with their multipliers. Finally, compact matrix relations and graphs of simulation for the input forces and powers are obtained.  相似文献   

18.
A physics-based framework for 3-D shape and nonrigid motion estimation for real-time computer vision systems is presented. The framework features dynamic models that incorporate the mechanical principles of rigid and nonrigid bodies into conventional geometric primitives. Through the efficient numerical simulation of Lagrange equations of motion, the models can synthesize physically correct behaviors in response to applied forces and imposed constraints. Applying continuous Kalman filtering theory, a recursive shape and motion estimator that employs the Lagrange equations as a system model is developed. The system model continually synthesizes nonrigid motion in response to generalized forces that arise from the inconsistency between the incoming observations and the estimated model state. The observation forces also account formally for instantaneous uncertainties and incomplete information. A Riccati procedure updates a covariance matrix that transforms the forces in accordance with the system dynamics and prior observation history. Experiments involving model fitting and tracking of articulated and flexible objects from noisy 3-D data are described  相似文献   

19.
In this paper, we present a formulation of the quaternion constraint for rigid body rotations in the form of a standard perfect bilateral mechanical constraint, for which the associated Lagrangian multiplier has the meaning of a constraint force. First, the equations of motion of a scalable body are derived. A scalable body has three translational, three rotational, and one uniform scaling degree of freedom. As generalized coordinates, an unconstrained quaternion and a displacement vector are used. To the scalable body, a perfect bilateral constraint is added, restricting the quaternion to unit length and making the body rigid. This way a quaternion based differential algebraic equation (DAE) formulation for the dynamics of a rigid body is obtained, where the 7×7 mass matrix is regular and the unit length restriction of the quaternion is enforced by a mechanical constraint. Finally, the equations of motion in the form of a DAE are linked to the Newton–Euler equations of motion of a rigid body. The rigid body DAE formulation is useful for the construction of (energy) consistent integrators.  相似文献   

20.
基于OpenGL的六自由度机械臂三维仿真工具的设计   总被引:1,自引:1,他引:0  
针对六自由度链式机械臂,为了解决运动学分析结果不易验证以及在实际本体上试验成本较高的问题,开发了一套六自由度机械臂三维仿真软件;该仿真软件是在VC++6.0开发平台上.基于MFC框架类和OpcnGL的图形库进行开发的;仿真软件有效地验证了机械臂数学模型以及正、逆运动学求解工程的正确性,并且对4种轨迹规划方式的效果做了直观的比较;结果表明开发出来的仿真软件对机械臂的研究与教学起了相应的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号