首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dual-color monodisperse polystyrene microspheres have been prepared by two-stage dispersion polymerization, whose addition of the dye-comonomer was deferred until the nucleation stage was complete. Two dyes were covalently incorporated into microspheres by copolymerization without disturbing the final particle size and size distribution. No dye leakage occurs for the microsphere suspension because of covalent bonding of dye molecules. By varying the dye concentrations in microspheres, we obtained fluorescent microspheres with two distinguishing parts of fluorescence and varied fluorescent intensity ratios under a single-wavelength excitation. The microspheres present intense fluorescence for the large amount of encapsulated dye molecules.  相似文献   

2.
羧基功能化聚苯乙烯荧光微球的制备及表征   总被引:1,自引:0,他引:1  
以苯乙烯、丙烯酸为单体,引入疏水性荧光染料罗丹明6G(Rh6G),采用微乳聚合法制备羧基聚苯乙烯荧光微球,并分析了表面活性剂、引发剂、丙烯酸用量对产物粒径分布的影响,考察了羧基聚苯乙烯荧光微球的浓度对荧光强度的影响。通过粒度分析仪、扫描电子显微镜、红外光谱仪、紫外吸收光谱以及荧光光谱仪对样品的纳米特性、形貌、结构和荧光性能进行了表征。结果表明,用微乳聚合法制备出50~250nm的羧基聚苯乙烯荧光微球,粒径均一且呈单分散性。紫外光谱图测试表明,在533nm左右有吸收峰。荧光光谱测试表明,羧基功能化的荧光聚苯乙烯微球浓度≤0.01%,其荧光最大激发峰为527nm,最大发射峰在555nm处;浓度高于0.01%时,荧光光谱出现红移,且荧光强度减弱。  相似文献   

3.
Biarsenical dyes complexed to tetracysteine motifs have proven to be highly useful fluorescent dyes in labeling specific cellular proteins for microscopic imaging. Their many advantages include membrane permeability, relatively small size, stoichiometric labeling, high affinity, and an assortment of excitation/emission wavelengths. The goal of the current study was to determine whether the biarsenical labeling scheme could be extended to fluorescent detection of analytes in capillary electrophoresis. Recombinant protein or synthesized peptides containing the optimized tetracysteine motif "-C-C-P-G-C-C-" were labeled with biarsenical dyes and then analyzed by micellar electrokinetic capillary chromatography (MEKC). The biarsenical-tetracysteine complex was stable and remained fluorescent under standard MEKC conditions for peptide and protein separations. The detection limit following electrophoresis in a capillary was less than 3 x 10(-20) mol with a simple laser-induced fluorescence system. A mixture of multiple biarsenical-labeled peptides and a protein were easily resolved. Demonstrating that the label did not interfere with bioactivity, a peptide-based enzyme substrate conjugated to the tetracysteine motif and labeled with a biarsenical dye retained its ability to be phosphorylated by the parent kinase. The feasibility of using this label for chemical cytometry experiments was shown by intracellular labeling and subsequent analysis of a recombinant protein possessing the tetracysteine motif expressed in living cells. The extension of the biarsenical-tetracysteine tag to fluorescent labeling of peptides and proteins in chemical separations is a valuable addition to biochemical and cell-based investigations.  相似文献   

4.
In fluorescence resonance energy transfer (FRET)-based assays, spectral separation of acceptor emission from donor emission is a common problem affecting the assay sensitivity. The challenge derives from small Stokes shifts characteristic to conventional fluorescent dyes resulting in leakage of donor emission to the measurement window intended only to collect the acceptor emission. We have studied a FRET-based homogeneous bioaffinity assay utilizing a tandem dye acceptor with a large pseudo-Stokes shift (139 nm). The tandem dye was constructed using B-phycoerythrin as an absorber and multiple Alexa Fluor 680 dyes as emitters. As a donor, we employed upconverting phosphor particles, which uniquely emit at visible wavelengths under low-energy infrared excitation enabling the fluorescence measurements free from autofluorescence even without time-resolved detection. With the tandem dye, it was possible to achieve four times higher signal from a single binding event compared to the conventional Alexa Fluor 680 dye alone. Tandem dyes are widely used in cytometry and other multiplex purposes, but their applications can be expanded to fluorescence-based homogeneous assays. Both the optimal excitation and emission wavelengths of tandem dye can be tuned to a desired region by choosing appropriate fluorophores enabling specifically designed acceptor dyes with large Stokes shift.  相似文献   

5.
Wu S  Lu JJ  Wang S  Peck KL  Li G  Liu S 《Analytical chemistry》2007,79(20):7727-7733
A novel staining method and the associated fluorescent dye were developed for protein analysis by capillary SDS-PAGE. The method strategy is to synthesize a pseudo-SDS dye and use it to replace some of the SDS in SDS-protein complexes so that the protein can be fluorescently detected. The pseudo-SDS dye consists of a long, straight alkyl chain connected to a negative charged fluorescent head and binds to proteins just as SDS. The number of dye molecules incorporated with a protein depends on the dye concentration relative to SDS in the sample solution, since SDS and dye bind to proteins competitively. In this work, we synthesized a series of pseudo-SDS dyes, and tested their performances for capillary SDS-PAGE. FT-16 (a fluorescein molecule linked with a hexadodecyl group) seemed to be the best among all the dyes tested. Although the numbers of dye molecules bound to proteins (and the fluorescence signals from these protein complexes) were maximized in the absence of SDS, high-quality separations were obtained when co-complexes of SDS-protein-dye were formed. The migration time correlates well with protein size even after some of the SDS in the SDS-protein complexes was replaced by the pseudo-SDS dye. Under optimized experimental conditions and using a laser-induced fluorescence detector, limits of detection of as low as 0.13 ng/mL (bovine serum albumin) and dynamic ranges over 5 orders of magnitude in which fluorescence response is proportional to the square root of analyte concentration were obtained. The method and dye were also tested for separations of real-world samples from E. coli.  相似文献   

6.
Conventional fluorescence microscopy can be used to determine the positions of objects in space when those objects are separated by distances greater than several hundred nanometers, as restricted by the diffraction limit of light. Fluorescence microscopy/spectroscopy based on fluorescence resonance energy-transfer techniques can be used to measure separation distances below approximately 10 nm. To fill the gap between these fundamental limits, we have developed an alternative technique for high-resolution colocalization of fluorescent dyes. The technique is based on fluorescence lifetime imaging. Under favorable conditions, the method can be used to distinguish, and to measure the distance between, two dye molecules that are less than 30 nm apart. To demonstrate the method, lifetime images of a mixture of Cy5 and JF9 (rhodamine derivative) molecules statistically adsorbed on a glass surface were acquired and analyzed. Since these two molecular species differ in fluorescence lifetime (for Cy5, tau(f) = 2.0 ns, and for JF9, tau(f) = 4.0 ns), it is possible to assign the contribution of fluorescence of the two dye types to each image pixel using a pattern recognition technique. Since both dye types can be excited using the same laser wavelength, the measurement is free of chromatic aberrations. The results presented demonstrate the first high-precision distance measurements between single conventional fluorescent dyes based solely on fluorescence lifetime.  相似文献   

7.
The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to approximately 100 fragments/s. We have increased the detection rate for DNA fragment sizing in SMFC to approximately 2000 fragments/s by parallel imaging of the fluorescence from individual DNA molecules, stained with a fluorescent intercalating dye, as they passed through a planar sheet of excitation laser light, resulting in order of magnitude improvements in the measurement speed and the sample throughput compared to conventional SMFC. Fluorescence bursts were measured from a fM solution of DNA fragments ranging in size from 7 to 154 kilobase pairs. A data acquisition time of only a few seconds was sufficient to determine the DNA fragment size distribution. A linear relationship between the number of detected photons per burst and the DNA fragment size was confirmed. Application of this parallel fluorescence imaging method will lead to improvements in the speed, throughput, and sensitivity of other types of flow-based analyses involving the study of single molecules, chromosomes, cells, etc.  相似文献   

8.
A procedure is described for assigning the number of equivalent reference fluorophores (ERF) values to microspheres labeled with a fluorophore designed to produce a fluorescence response in a given fluorescence channel of a multicolor flow cytometer. A fluorimeter was calibrated by a series of solutions of the reference fluorophores. The fluorimeter was used to obtain the microsphere fluorescence intensity, and a multicolor flow cytometer was used to obtain the microsphere concentration. The microsphere fluorescence intensity and the concentration were used to obtain the value of ERF for each model microsphere calibration standard. The procedure is described in detail only for microspheres with allophycocyanin (APC) immobilized on the surface. ERF values were also determined for microsphere calibrators for three other fluorescence channels: fluorescein isothiocyanate (FITC), phycoerythrin (PE), and Pacific Blue(PB). The four model microsphere calibrators provide a one point calibration for the four channels of a flow cytometer. By using software controls and changing the photomultiplier voltages, it is possible to obtain a multipoint calibration for each fluorescence channel using each microsphere calibrator.  相似文献   

9.
A method has been developed for highly sensitive detection of specific DNA sequences in a homogeneous assay using labeled oligonucleotide molecules in combination with single-molecule photon burst counting and identification. The fluorescently labeled oligonucleotides are called smart probes because they report the presence of complementary target sequences by a strong increase in fluorescence intensity. The smart probes consist of a fluorescent dye attached at the terminus of a hairpin oligonucleotide. The presented technique takes advantage of the fact that the used oxazine dye JA242 is efficiently quenched by complementary guanosine residues. Upon specific hybridization to the target DNA, the smart probe undergoes a conformational change that forces the fluorescent dye and the guanosine residues apart, thereby increasing the fluorescence intensity about six fold in ensemble measurements. To increase the detection sensitivity below the nanomolar range, a confocal fluorescence microscope was used to observe the fluorescence bursts from individual smart probes in the presence and absence of target DNA as they passed through the focused laser beam. Smart probes were excited by a pulsed diode laser emitting at 635 nm with a repetition rate of 64 MHz. Each fluorescence burst was identified by three independent parameters: (a) the burst size, (b) the burst duration, and (c) the fluorescence lifetime. Through the use of this multiparameter analysis, higher discrimination accuracies between smart probes and hybridized probe-target duplexes were achieved. The presented multiparameter detection technique permits the identification of picomolar target DNA concentrations in a homogeneous assay, i.e., the detection of specific DNA sequences in a 200-fold excess of labeled probe molecules.  相似文献   

10.
Capillary flow experiments are described with fluorescent molecules, bacteria, and microspheres using fluorescence correlation spectroscopy as an analytical tool. The flow velocity in the microcapillary is determined by fitting autocorrelation traces with a model containing parameters related to diffusion and flow. The flow profile of pressure-driven flow inside a microcapillary is determined by using the fluorescence fluctuations of a small dye molecule. It was found that bacteria and microspheres are retarded in their flow by optical forces produced by the laser beam.  相似文献   

11.
Here, we report a high-speed photospectral detection technique capable of discriminating subtle variations of spectral signature among fluorescently labeled cells and microspheres flowing in a microfluidic channel. The key component used in our study is a strain-tunable nanoimprinted grating microdevice coupled with a photomultiplier tube (PMT). The microdevice permits acquisition of the continuous spectral profiles of multiple fluorescent emission sources at 1 kHz. Optically connected to a microfluidic flow chamber via a multimode optical fiber, our multiwavelength detection platform allows for cytometric measurement of cell groups emitting nearly identical fluorescence signals with a maximum emission wavelength difference as small as 5 nm. The same platform also allows us to demonstrate microfluidic flow cytometry of four different microsphere types in a wavelength bandwidth as narrow as 40 nm at a high (>85%) confidence level. Our study shows that detection of fluorescent spectral signatures at high speed and high resolution can expand specificity of multicolor flow cytometry. The enhanced capability enables multiplexed analysis of color-coded bioparticles based on single-laser excitation and single-detector spectroscopy in a microfluidic setting. The fluorescence signal discrimination power achieved by the optofluidic technology holds great promise to enable quantification of cellular parameters with higher accuracy as well as enumeration of a larger number of cell types than conventional flow cytometric methods.  相似文献   

12.
Fluorescent dyes in solid matrices have many potential applications provided that their high optical efficiencies are achieved. We present here gold nanoparticles formed and incorporated together with fluorescent dye Rhodamine B into a film of polyvinyl alcohol (PVA). The increase of fluorescence of the dye results from its interaction with surface plasmons. The electric charge on the gold nanoparticles and the distance between them and the dye molecules has a significant effect on the fluorescence intensity. Fluorescence enhancement of 74% was achieved for the negatively charged particles. Dynamic measurements reveal decrease of fluorescent lifetimes of the dye in presence of gold nanoparticles. Our findings enable utilization of films with enhanced fluorescence in optical materials such as luminescence solar concentrators, solid state tunable laser and active waveguides.  相似文献   

13.
Yang X  Yan W  Liu Z  Lv H 《Applied optics》2012,51(11):1694-1700
A cross-polarization scheme is presented to filter out the excitation light from the emission spectrum of fluorescent dyes using green light emitting diodes as a light source and a linear charge coupled device as an intensity detector. The excitation light was linearly polarized and was then used to illuminate the fluorescent dyes in the microchannels of a capillary electrophoresis microchip. The detector was shielded by the second polarizer, oriented perpendicular to the excitation light. The fluorescent signals from Rhodamine B dyes were measured in a dilution series with resulting emission signals and four different concentrations of fluorescent dyes were detected simultaneously with the same excitation source and detector. A limit-of-detection of 1 μM was demonstrated for Rhodamine B dye under the optimal conditions.  相似文献   

14.
When proteins are conjugated to fluorescent organic dyes, fluorescence emission of the dye molecules is usually decreased, sometimes up to 50-70%. This quenching phenomenon has been acknowledged for decades, but as yet, there are no simple, practical methods to control the fluorescence of dyes conjugated to proteins, especially for dyes conjugated to immunoglobulins. Here, we report that the addition of (2-hydroxypropyl)-β-cyclodextrin (HPβCD) to dye-antibody conjugates can increase fluorescence up to 2.5-fold in cell imaging and flow analysis. This method may be an effective way to increase the sensitivity of detection of fluorescent organic labels used in immunology, histochemistry, and cell biology.  相似文献   

15.
A procedure is presented to convert the comparison of measured fluorescence signals into a comparison of fluorescence yields (FY). The fluorescence yield, which is a property of a solution or a suspension, is defined as the product of the fluorophore concentration and the molecular quantum yield. The paper revises the measurement model which relates the measured fluorescence signal to the FY. The equality of FY of two solutions provides an equivalence between the concentrations of fluorophore in the two solutions. The equivalence is the basis for quantitation in terms of molecules of equivalent soluble fluorophore (MESF). The quantitation procedure starts with the measurement of fluorescence signals from a serial dilution of fluorescein solutions to obtain a calibration of a fluorometer. The fluorometer is used to measure the fluorescence signal of a suspension of microspheres with immobilized fluorescein isothiocyanate (FITC). The calibration is used to obtain the concentration of soluble fluorophores which gives the same fluorescence signal as the microsphere suspension. The number concentration of microspheres is measured and the equality of fluorescence yields is used to obtain the number of soluble fluorescein molecules equivalent to a single microsphere.  相似文献   

16.
Patterned fluorescence correlation spectroscopy is developed as a new technique for measuring diffusion coefficients of photostable fluorescent probe molecules. In this method, interference between two intersecting, coherent laser beams creates an excitation fringe pattern from which fluorescence emission is monitored. Spontaneous concentration fluctuations of fluorescent molecules within the excitation volume are detected as excess noise on a fluorescence transient; concentration fluctuations are driven primarily by diffusion of these molecules between interference fringes although contributions from photobleaching and diffusion over the entire pattern dimensions can also be observed. Autocorrelation of the fluorescence transient allows analysis of the temporal characteristics of the fluctuations, which were used to determine solution diffusion coefficients; the method was applied to study the diffusion of Rhodamine 6G (R6G) in water/methanol solutions containing added electrolyte and in pure ethanol. The method can be used to characterize the diffusive transport of fluorescently labeled species, which is an important issue in designing small-volume detection experiments.  相似文献   

17.
This paper describes an improved format for Shah convolution Fourier transform (SCOFT) detection that utilizes the spatial resolution of a charge-coupled device (CCD) rather than a fixed optical mask to perform a Shah or sine convolution over a fluorescence signal. The laser-induced fluorescence from a 9-mm section of microfabricated channel is collected with a CCD at 28 Hz. Each image frame is multiplied by a convolution function to modulate the collected signal through space. Each frame is then summed to generate an intensity-versus-time data set for Fourier analysis. The fluorescence signal oscillates at a frequency dependent upon both the convolution function multiplied across each data frame and the velocity of fluorescent microspheres or a plug of fluorescent dye flowing through the channel. This SCOFT technique affords more flexibility over formats that employ a physical mask and provides data that can be optimized for signal-to-noise (S/N) or resolution information. A 1,000-fold improvement in S/N is demonstrated for a plug of fluorescein dye. Detection of fluorescent beads exhibited frequency signals that were dependent upon the bead size distribution, the electric field, and the electrophoresis buffer concentration. Data are presented demonstrating the quantitation of fluorescent microspheres.  相似文献   

18.
We introduce a robust and relatively easy-to-use method to evaluate the quality of two-color (or more) fluorescence coincidence measurements based on close investigation of the coincidence correlation-matrix. This matrix contains temporal correlations between the number of detected bursts in individual channels and their coincidences. We show that the Euclidian norm of a vector Γ derived from elements of the correlation matrix takes a value between 0 and 2 depending on the relative coincidence frequency. We characterized the Γ-norm and its dependence on various experimental conditions by computer simulations and fluorescence microscopy experiments. Single-molecule experiments with two differently colored dye molecules diffusing freely in aqueous solution, a sample that generates purely random coincidence events, return a Γ-norm less than one, depending on the concentration of the fluorescent dyes. As perfect coincidence sample we monitored broad autofluorescence of 2.8 μm beads and determined the Γ-norm to be maximal and close to two. As in realistic diagnostic applications, we show that two-color coincidence detection of single-stranded DNA molecules, using differently labeled Molecular Beacons hybridizing to the same target, reveal a value between one and two representing a mixture of an optimal coincidence sample and a sample generating random coincidences. The Γ-norm introduced for data analysis provides a quantifiable measure for quickly judging the outcome of single-molecule coincidence experiments and estimating the quality of detected coincidences.  相似文献   

19.
A method to identify single molecules rapidly and with high efficiency based on simple probability considerations is proposed. In principle, any property of a detected photon in a single-molecule fluorescence experiment, e.g., emission wavelength, arrival time after pulsed excitation, and polarization, can be analyzed within the framework of the outlined methodology. Monte Carlo simulations show that less than 500 photons are needed to assign an observed single molecule to one out of four species with a confidence level higher than 99.9%. We show that single dye molecules of four different dyes embedded in a polymer film can be identified with time-correlated single-photon counting spectrally resolved in two channels.  相似文献   

20.
Fluorescence is ubiquitous in life science and used in many fields of research ranging from ecology to medicine. Among the most common fluorogenic compounds, dyes are being exploited in bioimaging for their outstanding optical properties from UV down to the near IR (NIR). However, dye molecules are often toxic to living organisms and photodegradable, which limits the time window for in vivo experiments. Here, it is demonstrated that organic dye molecules are passivated and photostable when they are encapsulated inside a boron nitride nanotube (dyes@BNNT). The results show that the BNNTs drive an aggregation of the encapsulated dyes, which induces a redshifted fluorescence from visible to NIR-II. The fluorescence remains strong and stable, exempt of bleaching and blinking, over a time scale longer than that of free dyes by more than 104. This passivation also reduces the toxicity of the dyes and induces exceptional chemical robustness, even in harsh conditions. These properties are highlighted in bioimaging where the dyes@BNNT nanohybrids are used as fluorescent nanoprobes for in vivo monitoring of Daphnia Pulex microorganisms and for diffusion tracking on human hepatoblastoma cells with two-photon imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号