首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cells (MSCs) are of great interest to scientists due to their application in cell therapy of many diseases, as well as regenerative medicine and tissue engineering. Recently, there has been growing evidence surrounding the research based on extracellular vesicles (EVs), especially small EVs (sEVs)/exosomes derived from MSCs. EVs/exosomes can be secreted by almost all cell types and various types of EVs show multiple functions. In addition, MSCs-derived exosomes have similar characteristics and biological activities to MSCs and their therapeutic applications are considered as a safe strategy in cell-free therapy. The aim of this study was the characterization of MSCs isolated from the chorion (CHo-MSCs) of human full-term placenta, as well as the isolation and analysis of small EVs obtained from these cells. Accordingly, in this study, the ability of small EVs’ uptake is indicated by synovial fibroblasts, osteoblasts and periosteum-derived MSCs. Improvement in the understanding of the structure, characteristics, mechanism of action and potential application of MSCs-derived small EVs can provide new insight into improved therapeutic strategies.  相似文献   

2.
In the knee joint, articular cartilage injury can often lead to osteoarthritis of the knee (OAK). Currently, no point-of-care treatment can completely address OAK symptoms and regenerate articular cartilage to restore original functions. While various cell-based therapies are being developed to address OAK, exosomes containing various components derived from their cells of origin have attracted attention as a cell-free alternative. The potential for exosomes as a novel point-of-care treatment for OAK has been studied extensively, especially in the context of intra-articular treatments. Specific exosomal microRNAs have been identified as possibly effective in treating cartilage defects. Additionally, exosomes have been studied as biomarkers through their differences in body fluid composition between joint disease patients and healthy subjects. Exosomes themselves can be utilized as a drug delivery system through their manipulation and encapsulation of specific contents to be delivered to specific cells. Through the combination of exosomes with tissue engineering, novel sustained release drug delivery systems are being developed. On the other hand, many of the functions and activities of exosomes are unknown and challenges remain for clinical applications. In this review, the possibilities of intra-articular treatments utilizing exosomes and the challenges in using exosomes in therapy are discussed.  相似文献   

3.
Tissue engineering has been an inveterate area in the field of regenerative medicine for several decades. However, there remains limitations to engineer and regenerate tissues. Targeted therapies using cell-encapsulated hydrogels, such as mesenchymal stem cells (MSCs), are capable of reducing inflammation and increasing the regenerative potential in several tissues. In addition, the use of MSC-derived nano-scale secretions (i.e., exosomes) has been promising. Exosomes originate from the multivesicular division of cells and have high therapeutic potential, yet neither self-replicate nor cause auto-immune reactions to the host. To maintain their biological activity and allow a controlled release, these paracrine factors can be encapsulated in biomaterials. Among the different types of biomaterials in which exosome infusion is exploited, hydrogels have proven to be the most user-friendly, economical, and accessible material. In this paper, we highlight the importance of MSCs and MSC-derived exosomes in tissue engineering and the different biomaterial strategies used in fabricating exosome-based biomaterials, to facilitate hard and soft tissue engineering.  相似文献   

4.
Thiol–norbornene (thiol–ene) photoclick hydrogels have emerged as a diverse material system for tissue engineering applications. These hydrogels are crosslinked through light‐mediated orthogonal reactions between multifunctional norbornene‐modified macromers [e.g., poly(ethylene glycol) (PEG), hyaluronic acid, gelatin] and sulfhydryl‐containing linkers (e.g., dithiothreitol, PEG–dithiol, biscysteine peptides) with a low concentration of photoinitiator. The gelation of thiol–norbornene hydrogels can be initiated by long‐wave UV light or visible light without an additional coinitiator or comonomer. The crosslinking and degradation behaviors of thiol–norbornene hydrogels are controlled through material selections, whereas the biophysical and biochemical properties of the gels are easily and independently tuned because of the orthogonal reactivity between norbornene and the thiol moieties. Uniquely, the crosslinking of step‐growth thiol–norbornene hydrogels is not oxygen‐inhibited; therefore, gelation is much faster and highly cytocompatible compared with chain‐growth polymerized hydrogels with similar gelation conditions. These hydrogels have been prepared as tunable substrates for two‐dimensional cell cultures as microgels and bulk gels for affinity‐based or protease‐sensitive drug delivery, and as scaffolds for three‐dimensional cell encapsulation. Reports from different laboratories have demonstrated the broad utility of thiol–norbornene hydrogels in tissue engineering and regenerative medicine applications, including valvular and vascular tissue engineering, liver and pancreas‐related tissue engineering, neural regeneration, musculoskeletal (bone and cartilage) tissue regeneration, stem cell culture and differentiation, and cancer cell biology. This article provides an up‐to‐date overview on thiol–norbornene hydrogel crosslinking and degradation mechanisms, tunable material properties, and the use of thiol–norbornene hydrogels in drug‐delivery and tissue engineering applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41563.  相似文献   

5.
组织工程用海藻酸盐水凝胶的研究进展   总被引:17,自引:0,他引:17  
何淑兰  尹玉姬  张敏  姚康德 《化工进展》2004,23(11):1174-1178
海藻酸钠已经被广泛应用于生物医学领域。本文从组织工程角度出发,综述了海藻酸盐水凝胶的形成机理、制备方法以及应用研究进展。  相似文献   

6.
Poly (vinyl alcohol) (PVA) is a hydrophilic polymer with excellent biocompatibility and has been applied in various biomedical areas due to its favorable properties. PVA-based hydrogels have been recognized as promising biomaterials and suitable candidates for tissue engineering applications and can be manipulated to act various critical roles. However, due to some disadvantages (i.e., lack of cell-adhesive property), they needs further modification for desired and targeted applications. This review highlights recent progress in the design and fabrication of PVA-based hydrogels, including crosslinking and processing techniques. Finally, major challenges and future perspectives in tissue engineering are briefly discussed.  相似文献   

7.
Injectable biodegradable copolymer hydrogels, which exhibit temperature-responsive sol-to-gel transition, have recently drawn much attention as promising biomedical materials such as drug delivery, cell implantation, and tissue engineering. These injectable hydrogels can be implanted in the human body with minimal surgical invasion. Temperature-responsive gelling copolymers usually possess block- and/or branched architectures and amphiphilicity with a delicate hydrophobic/hydrophilic balance. Poly(ethylene glycol) (PEG) has typically been used as hydrophilic segments due to its biocompatibility and temperature-dependent dehydration nature. Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide), poly(ε-caprolactone), and their modified copolymers have been used as hydrophobic segments based on their biodegradability and biocompatibility. Copolymers of PEG with other hydrophobic polymers such as polypeptides, polydepsipeptides have also been recently reported as injectable hydrogels. In this review, brief history and recent advances in injectable biodegradable polymer hydrogels are summarized especially focusing on the relationship between polymer architecture and their gelation properties. Moreover, the applications of these injectable polymer gels for biomedical use such as drug delivery and tissue engineering are also described.  相似文献   

8.
Alginate: properties and biomedical applications   总被引:1,自引:0,他引:1  
Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.  相似文献   

9.
Articular cartilage has poor ability to heal once damaged. Tissue engineering with scaffolds of polymer hydrogels is promising for cartilage regeneration and repair. Polymer hydrogels composed of highly hydrated crosslinked networks mimic the collagen networks of the cartilage extracellular matrix and thus are employed as inserts at cartilage defects not only to temporarily relieve the pain but also to support chondrocyte proliferation and neocartilage regeneration. The biocompatibility, biofunctionality, mechanical properties, and degradation of the polymer hydrogels are the most important parameters for hydrogel‐based cartilage tissue engineering. Degradable biopolymers with natural origin have been widely used as biomaterials for tissue engineering because of their outstanding biocompatibility, low immunological response, low cytotoxicity, and excellent capability to promote cell adhesion, proliferation, and regeneration of new tissues. This review covers several important natural proteins (collagen, gelatin, fibroin, and fibrin) and polysaccharides (chitosan, hyaluronan, alginate and agarose) widely used as hydrogels for articular cartilage tissue engineering. The mechanical properties, structures, modification, and structure–performance relationship of these hydrogels are discussed since the chemical structures and physical properties dictate the in vivo performance and applications of polymer hydrogels for articular cartilage regeneration and repair. © 2012 Society of Chemical Industry  相似文献   

10.
可注射水凝胶在组织工程中应用进展   总被引:5,自引:1,他引:4  
陈涛  姚康德 《化工进展》2004,23(8):827-831
组织工程采用可注射原位形成水凝胶,与预成型支架相比具有特定的优势:能填充任意形状的缺损,并在很大程度上降低植入对机体组织的侵入性,且能与各种治疗药物混合。本文介绍了可注射凝胶形成过程及几种水凝胶系统.并以实例说明可注射水凝胶在组织工程中的应用。  相似文献   

11.
Fibrin hydrogels are one of the most popular scaffolds used in tissue engineering due to their excellent biological properties. Special attention should be paid to the use of human plasma-derived fibrin hydrogels as a 3D scaffold in the production of autologous skin grafts, skeletal muscle regeneration and bone tissue repair. However, mechanical weakness and rapid degradation, which causes plasma-derived fibrin matrices to shrink significantly, prompted us to improve their stability. In our study, plasma-derived fibrin was chemically bonded to oxidized alginate (alginate di-aldehyde, ADA) at 10%, 20%, 50% and 80% oxidation, by Schiff base formation, to produce natural hydrogels for tissue engineering applications. First, gelling time studies showed that the degree of ADA oxidation inhibits fibrin polymerization, which we associate with fiber increment and decreased fiber density; moreover, the storage modulus increased when increasing the final volume of CaCl2 (1% w/v) from 80 µL to 200 µL per milliliter of hydrogel. The contraction was similar in matrices with and without human primary fibroblasts (hFBs). In addition, proliferation studies with encapsulated hFBs showed an increment in cell viability in hydrogels with ADA at 10% oxidation at days 1 and 3 with 80 µL of CaCl2; by increasing this compound (CaCl2), the proliferation does not significantly increase until day 7. In the presence of 10% alginate oxidation, the proliferation results are similar to the control, in contrast to the sample with 20% oxidation whose proliferation decreases. Finally, the viability studies showed that the hFB morphology was maintained regardless of the degree of oxidation used; however, the quantity of CaCl2 influences the spread of the hFBs.  相似文献   

12.
Chitosan (CS) has received much attention as a functional biopolymer for designing various hydrogels for biomedical applications. This review provides an overview of the different types of CS‐based hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and their applications in controlled drug delivery and tissue engineering. Emphasis is laid on the recent design concepts of hybrid hydrogels based on mixtures of CS and natural or synthetic polymers, interpenetrating polymer networks as well as composite hydrogels prepared by embedding nanoparticles into CS matrices. © 2017 Society of Chemical Industry  相似文献   

13.
H Wang  Z Yang 《Nanoscale》2012,4(17):5259-5267
Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.  相似文献   

14.
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.  相似文献   

15.
So far, several methods for myocardial tissue engineering have been developed to regenerate myocardium and even create contractile heart muscles. Among these approaches, hydrogel based methods have attracted much attention due to their ability to mimic the architecture of native extracellular matrix. Injectable hydrogels are a specific class of hydrogels which can be formed in situ by physical and/or chemical crosslinking. Generally, using these hydrogels is more advantageous because they are minimally (less) invasive in comparison with open surgery. Moreover, with respect to the fact that ‘myocardium is a conductive tissue’, utilization of conductive polymers for myocardial tissue engineering has demonstrated promising results. Both the injectable hydrogels and conductive polymers have some merits and demerits, but studies show that using a combination of them has prominently enhanced regeneration of the myocardium. In this review, the focus is on injectable hydrogels, conductive polymers and injectable conductive hydrogels for myocardial tissue engineering. © 2018 Society of Chemical Industry  相似文献   

16.
刘壮  谢锐  巨晓洁  汪伟  褚良银 《化工进展》2016,35(6):1812-1819
环境刺激响应型智能水凝胶能够对外界环境因素的变化产生显著的体积或其他特性的变化,且其性质和结构与生物组织类似,有望应用于人工软骨、人造肌肉、组织工程等领域,引起了广泛的关注。提高环境刺激响应型智能水凝胶的力学性能是智能水凝胶应用研究的重要方向之一。本文综述了近年来环境刺激响应型高强度智能水凝胶的研究进展,简述了高强度智能水凝胶的网络结构的构建策略与方法,分析了其具备高力学性能的机理,重点介绍了4类不同结构的高强度智能水凝胶,即超低交联结构水凝胶、纳米颗粒复合水凝胶、拓扑结构水凝胶以及双网络结构水凝胶,最后讨论了环境刺激响应型高强度智能水凝胶在面向应用的研究过程中仍然需要解决的关键科学问题,如智能水凝胶的环境刺激与力学性能的博弈效应以及响应环境刺激前后的力学性能差异等。  相似文献   

17.
Hydrogels consist of three-dimensionally crosslinked polymeric chains, are hydrophilic, have the ability to absorb other molecules in their structure and are relatively easy to obtain. However, in order to improve some of their properties, usually mechanical, or to provide them with some physical, chemical or biological characteristics, hydrogels have been synthesized combined with other synthetic or natural polymers, filled with inorganic nanoparticles, metals, and even polymeric nanoparticles, giving rise to composite hydrogels. In general, different types of hydrogels have been synthesized; however, in this review, we refer to those obtained from the thermosensitive polymer poly(N-vinylcaprolactam) (PNVCL) and we focus on the definition, properties, synthesis techniques, nanomaterials used as fillers in composites and mainly applications of PNVCL-based hydrogels in the biomedical area. This type of material has great potential in biomedical applications such as drug delivery systems, tissue engineering, as antimicrobials and in diagnostic and bioimaging.  相似文献   

18.
Hydrogels are suitable biomaterials for cartilage tissue engineering due to the excellent ability to retain water to provide suitable environment for the tissue, however, the insufficient mechanical properties often prevent their wider applications. The objective of this study was to fabricate biocompatible hydrogels with good mechanical performance, high-water content, and porous microstructure for cartilage regeneration. Photocrosslinked hydrogels are one of the most widely used systems in tissue engineering due to the superior mechanical properties. In this study, block copolymer, poly(ε -caprolactone)-poly(ethylene)-poly(ε -caprolactone) diacrylate (PCL–PEG–PCL; PEC), was prepared by ring-opening polymerization, and PEC hydrogels were made through free radical crosslinking mechanism. Agarose network is chosen as another component of the hydrogels, because of the high-swelling behavior and cartilage-like microstructure, which is helpful for chondrocytes growth. Interpenetrating networks (IPN) were fabricated by diffusing PEC into agarose network followed by photo-crosslinking process. It was noted that incorporating PEC into the agarose network increased the elastic modulus and the compressive failure properties of individual component networks. In addition, high-swelling ratio and uniform porosity microstructures were found in the IPN hydrogels. IPN and PEC showed low cytotoxicity and good biocompatibility in elution test method. The results suggest promising characteristics of IPN hydrogels as a potential biomaterial for cartilage tissue engineering.  相似文献   

19.
Polymer hydrogels consist of a three-dimensional (3D) structure with cross-linked networks rich in a huge amount of water through hydrogen-bonding interactions, making them highly hydrophilic. Due to their impressive hydrophilic characteristics and cell non-cytotoxicity, polymer hydrogels are useful tissue engineering tools for the organization of cells and tissues and organ regeneration. Many biomedical engineers and researchers have recently begun to utilize polymer hydrogels as tissue or cell culture environments and as scaffolds for the stable growth of organs in tissue engineering and regeneration medicine. This paper focuses on skin regeneration in polymer hydrogels where skin is a means of protecting the body from infection or physical or chemical damage. Generally, skin tissue that has incurred minor damage or wounds can regenerate and heal in a relatively short time, while severe injuries may require transplantation or artificial skin. For those purposes, skin culturing in an in vitro environment is essential, and the environment produced using polymer hydrogel scaffolds needs to be both similar to the real environment and safe for skin cell growth. This paper reviews post-2000 skin regeneration research in the field of tissue engineering, focusing specifically on polymer hydrogels; it also discusses some of the central perspectives and key issues.  相似文献   

20.
Vinyl polymers are widely used in biological, textile and industrial applications and are currently attracting research attention for specialized bio-based applications. Polyvinyl alcohol (PVA) hydrogels show great advantages as a material with high biocompatibility, permeability, hydrophilicity, and low-friction coefficient, allowing applications as smart materials, wound dressings, and flexible sensors. However, the poor mechanical properties of PVA hydrogels and biocompatibility less than natural polymers make them unsuitable in practical applications. Additives are often added to PVA hydrogels to enhance mechanical properties, endow more compatibility, functionality and expand their application range. Among them, bio-additives such as nanocellulose, natural polysaccharides and proteins are biodegradable, biocompatible, and inexpensive, broadening their applications in the biomedical and tissue engineering fields. This work reviews the synthesis of PVA hydrogels, methods to enhance their mechanical properties, types of bio-additives incorporated for biocompatibility, their mechanism of interaction with PVA and future prospects of PVA composite bio-hydrogels for application in various fields. Representative cases are carefully selected and discussed with regard to their composition and pros and cons are discussed. Finally, future requirements, as well as the opportunities and challenges of these bio-additives for improving the multifunctionality of PVA hydrogels are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号