首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用显微硬度测试、电导率测试、拉伸力学性能测试以及透射电镜观察,研究时效温度和时效时间对2A14大规格铝合金棒材力学性能和电导率的影响规律。结果表明:在相同的时效时间下,合金电导率随时效温度升高而逐渐升高;在相同的时效温度下,合金电导率随时效时间的延长而逐渐升高。固溶态2A14合金中存在与Al6Mn晶体结构相近的Al12(MnCu)3Si2粒子,此Al12(MnCu)3Si2粒子在合金再结晶过程中影响晶界迁移,抑制晶粒在固溶过程中的长大效应;时效后,合金中主要的强化相为S'相,但在140℃(或低于400℃)时效12 h的合金中,强化相数量较少,合金性能与固溶态接近;经160℃、12 h时效后,合金具有较好的综合力学性能,其抗拉强度和屈服强度分别为509 MPa和452 MPa,伸长率为10.1%;在180℃、12 h时效条件下处理后,合金中的S'相会明显粗化,屈服强度和抗拉强度大幅下降,伸长率升高,表现出明显的过时效特征。  相似文献   

2.
采用扫描电镜(SEM)、X射线衍射(XRD)和力学性能测试等手段研究了固溶处理对ZA27合金组织和性能的影响。在300~380℃范围,合金经不同温度固溶处理1 h,水淬后进行相同的时效(160℃×8 h)处理。分析了在不同温度固溶处理的淬火态和时效态合金的显微组织及力学性能。结果表明,在365℃固溶处理能够使溶质原子充分溶入基体,时效析出相数量多、尺寸小、分布均匀,时效强化效果最好。ZA27合金的优选固溶工艺为365℃×1 h。  相似文献   

3.
对ZA27合金进行365℃/3 h的固溶化处理,研究90℃时效对其拉伸性能及阻尼性能的影响。结果表明,固溶态ZA27合金经过90℃、6 h时效后的组织主要由α相和η相层片组织组成,另有少量粒状组织。固溶态合金的拉伸强度和阻尼性能均较低,伸长率较高。时效使合金拉伸强度和阻尼性能先提高后下降;使延伸率先降低后提高。时效6 h后ZA27合金的拉伸强度为401 MPa,伸长率为6.6%,阻尼性能为3.0×10^-3。  相似文献   

4.
采用扫描电镜(SEM)、X射线衍射(XRD)、电子背散射衍射(EBSD)和能谱仪(EDS)等研究了经不同温度固溶处理的7A85铝合金显微组织和断裂机理。结果表明:经446~470℃固溶1 h后淬火,合金的再结晶分数从5.72%(446℃×1 h)增至12.5%(470℃×1 h),平均晶粒尺寸从12.18μm增加至15.03μm;经双级时效(120℃×4.5 h+165℃×6 h)处理后,难溶第二相颗粒体积分数从热轧态的5.78%降至1.37%~2.32%;合金经470℃固溶1 h及双级时效后的综合力学性能最优,其抗拉强度、屈服强度和断后伸长率分别为(526.4±8.3) MPa、(476.0±9.5) MPa和(10.5±1.4)%;固溶温度超过462℃时,细晶强化机制减弱,合金的断裂机理由颗粒脱聚断裂转变为穿晶韧窝断裂。  相似文献   

5.
通过扫描电镜(SEM)、透射电镜(TEM)和拉伸性能测试等方法系统研究固溶和时效工艺对2297铝锂合金组织和性能的影响。结果表明:实验合金较为适宜的固溶制度为((535±5)℃,1.5 h),基体中的第二相得到比较充分的溶解,同时抑制再结晶晶粒长大。T6态的主要强化相为T_1相和θ′相,T8态的主要强化相为T_1相,时效前的预变形可以促进T1相的形成,提高合金的强度峰值,缩短合金达到峰值的时间,160℃时效后,未经预变形的合金的强度峰值为392 MPa,到峰时间为48 h,变形量为7%时,合金的强度峰值最高,达到482 MPa,到峰时间为23 h。  相似文献   

6.
采用光学显微镜及透射电镜研究了挤压变形Mg-5.5Zn-1.7Nd-0.7Cd-0.5Zr镁合金在不同热处理条件下的组织和性能。结果表明,经T6(固溶420℃×20h+时效200℃×20h)处理后,合金的抗拉强度和屈服强度低于挤压态,而经过T5(时效120℃×15h)处理后,高于挤压态;在T5工艺条件下,合金具有较好的力学性能,其抗拉强度σb=349MPa,屈服强度σ0.2=315MPa,伸长率δ=13%。  相似文献   

7.
采用正交试验及其方差分析、最小显著差数(LSD)法研究新型Al-Cu-Li-Ag-Mg-Zr-Ce合金的固溶和时效热处理工艺,并采用电导率、SEM、EDX、TEM等测试手段对合金热处理过程中组织结构和性能进行分析。结果表明:该合金在固溶(520℃,1.5 h,水冷)和时效(180℃,18 h,空冷)处理后,T6态显微硬度比轧制态的提高100.8%,T87态强度值达到623 MPa。固溶过程中,大量Ce、Cu、Mg、Zr溶于基体起到固溶强化作用;时效时细小片状强化相T1和薄盘状θ′相均匀弥散在基体中析出,具有强烈沉淀强化效果。  相似文献   

8.
Mg-3Nd-0.2Zn-0.4Zr合金的显微组织与力学性能   总被引:1,自引:0,他引:1  
对Mg-3Nd-0.2Zn-0.4Zr(NZ30K)合金铸态、固溶态(T4)和时效态(T6)的显微组织、室温力学性能和断裂行为进行了研究。研究结果表明,NZ30K合金铸态时由α-Mg与分布在晶界的Mg12Nd相组成;固溶处理态时由过饱和α-Mg固溶体和晶粒内部细小的含Zr化合物组成;时效处理态时细小片状析出相从棱柱面析出,同时晶粒内部细小的含Zr化合物仍然存在。不同的时效处理工艺下时效析出相种类不同,200℃峰值时效态时为β″亚稳相,250℃×10h时效态时为β′亚稳相。合金经过200℃峰值时效处理后具有最佳的室温力学性能,屈服强度、抗拉强度和伸长率分别为142MPa、305MPa、11%。合金的断裂方式与其状态有关,铸态合金以沿晶断裂为主,固溶处理态和200℃峰值时效态合金以穿晶解理断裂为主,250℃×10h时效态合金为穿晶和沿晶混合型断裂。  相似文献   

9.
《铸造》2020,(4)
研究了少量Sr(0、0.2%、0.5%、1.0%)的加入对铸态Mg-4Zn合金组织和力学性能的影响,以及热处理对Mg-Zn-Sr合金显微组织与力学性能的影响。结果表明,添加0.5%Sr的铸态合金具有最佳的力学性能,其抗拉强度为161 MPa,屈服强度为82 MPa,伸长率为10.30%。合金经过440℃×18 h固溶处理后,第二相基本固溶进基体中,其抗拉强度为192 MPa,屈服强度为99 MPa,伸长率为14.77%。随着时效时间的增加,MgZn相数量增加,且弥散分布,时效8 h,合金性能较好,其抗拉强度为223 MPa,屈服强度为118 MPa,伸长率为12.06%。时效12 h,Mg_(17)Sr_2相开始大量析出,影响合金性能。  相似文献   

10.
针对生产中稀土镁合金低成本化,结合溶质总量控制与稀土耦合强化原理,设计了3种Mg-Y-Gd-Sm镁合金。结合DSC曲线和铸态组织分析3种合金离异共晶相占比;对比分析3种合金不同固溶处理后的组织及力学性能和不同温度的时效硬化曲线,以优化固溶及时效热处理工艺。结果表明,在砂型慢冷条件下Mg-4.5Y-2.5Gd-1.5Sm合金经530℃×24 h+200℃×100 h(T6)处理后,力学性能最优,抗拉强度、屈服强度、伸长率分别为267 MPa、200 MPa、2.0%。  相似文献   

11.
为解决因残余应力、组织不均匀性、成分偏析所造成的铸态Mg-3Zn-0.8Zr-1Y(mass%)合金性能不佳的问题,对其进行了固溶和时效处理,研究了热处理工艺对其显微组织、力学性能及耐腐蚀性能的影响。结果表明:Mg-3Zn-0.8Zr-1Y合金的最优热处理工艺是480℃均匀化退火12 h后520℃固溶处理12 h,最后在170℃时效24 h。均匀化退火处理缓解了铸态合金中的偏析现象,固溶处理使铸态合金中的W(Mg3Y2Zn3)相基本融入α-Mg基体中形成过饱和固溶体,时效后组织中析出细小且弥散分布的纳米级短杆状Mg2Zn3和颗粒状Mg4Zn7第二相。与铸态合金相比,经最优工艺处理后合金的硬度、极限抗拉强度、屈服强度和伸长率分别提升到83.4 HV、204 MPa、139 MPa和12.5%,自腐蚀电位提高到-1.793 V(vs.SCE)、腐蚀电流密度降低到59.64μA/cm2,腐蚀速率降低到1.36 mm/y...  相似文献   

12.
为了确定挤压态Mg-5Sn-2Si-2Sr合金合适的热处理方案,分别采用硬度计、X射线衍射仪、力学性能试验机、光学显微镜,研究了该合金经T4(固溶处理)、T5(200℃×12 h时效)和T6(固溶+时效)热处理后显微组织及力学性能的变化。结果表明:挤压态Mg-5Sn-2Si-2Sr合金宜采用T5热处理工艺。经T5热处理后,在晶界处析出大量Mg2Si强化相,使合金的屈服强度、抗拉强度分别达210.9 MPa、257.0 MPa,高于挤压态、T4和T6热处理工艺下的合金强度。T4热处理时,固溶强化作用远小于退火软化作用,致使合金力学性能的下降。T6热处理时,析出相及晶粒尺寸的长大使得合金力学性能的提高受到了限制。  相似文献   

13.
研究了新型高强钛合金(Ti-6Al-6Mo-4V)的微观结构和力学性能。分别在α/β和β区固溶处理后,在460~620℃5个不同温度下时效6h,研究合金的组织与性能之间的关系。结果表明,α/β区固溶时效处理后的性能与β单相区固溶时效处理后相比,α/β区固溶时效处理后合金获得更好的强度和塑性组合。在850℃(α/β区域)固溶处理以及460℃时效后,合金获得最高的强度为1572 MPa,伸长率为2.63%;在620℃时效时,合金的伸长率达到最高为11.46%,但强度较低为1201 MPa。经过825℃固溶处理,540℃时效后,该合金获得最好的强度(1328 MPa)和伸长率(7.58%)匹配。同时,β区溶液处理后的β晶粒较大,时效后形成细小的二次α相,导致强度和塑性较差。  相似文献   

14.
研究了不同固溶处理工艺对Mg-2.6Sm-1.3Gd-0.6Zn-0.5Zr合金显微组织和力学性能的影响。合金的铸态显微组织主要由α-Mg和(Mg,Zn)3(Sm,Gd)1共晶相组成。510℃,4 h为最佳固溶处理条件,晶界附近的共晶相几乎全部溶于镁基体中,合金固溶态的室温抗拉强度为246 MPa,延伸率为11.3%。合金200℃时效析出序列为Mgssss→β’’(D019)→β’(bct)→β(fcc),峰时效态合金的屈服强度和抗拉强度达到185 MPa和282 MPa,延伸率为6.1%。  相似文献   

15.
以含Er的压铸Al-Si-Mg合金为研究对象,通过拉伸性能测试、光学显微镜(OM)、扫描电镜(SEM)、能谱(EDS)及透射电镜(TEM)分析及定量统计,分析研究了不同固溶、时效工艺对合金组织及性能的影响。结果表明:双级固溶有利于一次相回溶至基体,使合金的塑性提高;固溶温度、时间的提高能够增加固溶到基体中的溶质原子和一次相的数量。Al-Si-Mg合金峰时效时,主要的强化相为β″、β′相,β′相主要表现为长条状及“T”字形。当热处理工艺为(280 ℃×3 h+530 ℃×3 h)固溶+170 ℃×3 h时效时,合金的伸长率达8.5%,具有高塑性; 热处理工艺为(280 ℃×3 h+540 ℃×10 h)固溶+170 ℃×10 h时效时,合金的抗拉强度为344 MPa,屈服强度为312 MPa,合金具有高强度。  相似文献   

16.
采用金相显微镜、扫描电镜和硬度测试等手段,研究了固溶和时效热处理对Mg-Nd-Zr合金组织和性能的影响。结果表明,合金经460~520℃固溶处理后,随着固溶温度的升高和保温时间的延长,铸态组织中晶界上的化合物逐渐溶解,当固溶温度过高和保温时间过长时,晶粒长大。合金经490℃×8h固溶处理后时效,随着时效时间的延长,固溶时残留的第二相逐渐溶解,均匀析出第二相,合金硬度逐渐增大,达到峰值后进入过时效阶段,析出的第二相变大,硬度值下降。Mg-Nd-Zr合金的最佳热处理工艺为经490℃×8h固溶处理后,进行225℃×4h时效。  相似文献   

17.
在大气环境下采用普通中频感应电炉制备了Cu-0.99 Cr合金,并研究分析了该合金的铸态和热处理态的显微组织和力学性能.试验结果表明,铸态和固溶时效合金中所存在的相为α-Cu、Cr.铸态时部分Cr溶于基体中,部分Cr以第二相形式存在.合金铸态试样的拉伸强度为211.5 MPa,硬度为85.8 HB.对铸态合金试样经980℃×1 h固溶(水淬)→470℃×4 h时效(空冷)热处理后,过饱和固溶体分解析出了更多的Cr相.其拉伸强度和硬度分别提高到274.6 MPa和116.9 HB.  相似文献   

18.
通过光学显微镜、扫描电镜和透射电镜等技术,研究固溶与时效处理制度对6022汽车用铝合金微观组织及性能的影响规律。结果表明:经540℃保温0.5 h的固溶处理后,合金已发生完全再结晶,晶粒尺寸较为均匀,材料中存在部分未固溶到基体的第二相;预时效(150℃×5 min)+自然时效(72 h)处理后,其规定塑性延伸强度为129 MPa,抗拉强度为255 MPa,断后伸长率为25%,更利于成型;随后的人工时效(180℃×20 h)处理可以提高材料的强度,规定塑性延伸强度为327 MPa,抗拉强度为357 MPa,达到汽车覆盖件的使用要求。  相似文献   

19.
采用显微组织观察和拉伸性能测试的方法,研究了不同热处理条件对Mg-Gd-Y-Nd-Zr挤压合金组织和力学性能的影响。实验结果表明:T5为最佳的热处理方法。挤压态Mg-Gd-Y-Nd-Zr合金经T5(520℃×10 h固溶+225℃×24 h人工时效)处理后,抗拉强度和屈服强度大幅度提高,分别达到375 MPa和346.8 MPa,但伸长率降低。  相似文献   

20.
本文通过调控低合金化、低层错能的Ni-Cr-Co基变形高温合金的“γ′相+孪晶”复合结构,分析了孪晶界对晶粒细化和强度提高的贡献以及复合结构对合金强塑性的影响。结果表明,合金在1090 ℃保温1 h的固溶处理后,锻态组织中粗大块状γ′相基本溶解,且此时组织中的孪晶含量高达51.65%。固溶态合金伸长率(42.9%)相比于锻态(26.8%)提升了63.6%,屈服强度为693 MPa(相比于锻态仅下降了3%),其中σ tb=66.98 MPa,其贡献度基本和细晶强化的程度(77.4 MPa)持平。将固溶态合金经700 ℃/8 h/AC处理后的时效态合金孪晶含量为34.41%,同时组织引入大量沉淀强化相γ′相,构成“γ′相+孪晶”复合结构,此时时效态合金硬度、抗拉强度、屈服强度与伸长率(405 Hv,1042 MPa,864 MPa,49.76%)相较于固溶态(324.4 Hv,879 MPa,693 MPa ,42.9%,)均得到进一步提高,其中σ tb=107.94 MPa。低合金化、低层错能的高温合金中的“γ′相+孪晶”复合结构实现了一定的强塑性匹配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号