首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of novel hydrazone derivatives were synthesized and analyzed for their biological activities. The compounds were tested for their inhibitory effect on the phosphorylating activity of the protein kinase CK2, and their antioxidant activity was also determined in three commonly used assays. The hydrazones were evaluated for their radical scavenging against the DPPH, ABTS and peroxyl radicals. Several compounds have been identified as good antioxidants as well as potent protein kinase CK2 inhibitors. Most hydrazones containing a 4-N(CH3)2 residue or perfluorinated phenyl rings showed high activity in the radical-scavenging assays and possess nanomolar IC50 values in the kinase assays.  相似文献   

2.
A new series of 2-amino-benzo[de]isoquinoline-1,3-diones was synthesized and fully characterized in our previous paper. Here, their cytotoxic effects have been evaluated in vitro in relation to colon HCT-116, hepatocellular Hep-G2 and breast MCF-7 cancer cell lines, using a crystal violet viability assay. The IC50-values of the target compounds are reported in µg/mL, using doxorubicin as a reference drug. The findings revealed that compounds 14, 15, 16, 21 and 22 had significant cytotoxic effects against HCT-116, MCF-7 and Hep-G2 cell lines. Their IC50 values ranged between 1.3 and 8.3 μg/mL in relation to doxorubicin (IC50 ≈ 0.45–0.89 μg/mL). Therefore, these compounds could be used as templates for furthering the development and design of more potent antitumor agents through structural modification.  相似文献   

3.
In the search for new and effective treatments of breast and prostate cancer, a series of hybrid compounds based on tamoxifen, estrogens, and artemisinin were successfully synthesized and analyzed for their in vitro activities against human prostate (PC-3) and breast cancer (MCF-7) cell lines. Most of the hybrid compounds exhibit a strong anticancer activity against both cancer cell lines – for example, EC50 (PC-3) down to 1.07 μM, and EC50 (MCF-7) down to 2.08 μM – thus showing higher activities than their parent compounds 4-hydroxytamoxifen (afimoxifene, 7 ; EC50=75.1 (PC-3) and 19.3 μM (MCF-7)), dihydroartemisinin ( 2 ; EC50=263.6 (PC-3) and 49.3 μM (MCF-7)), and artesunic acid ( 3 ; EC50=195.1 (PC-3) and 32.0 μM (MCF-7)). The most potent compounds were the estrogen-artemisinin hybrids 27 and 28 (EC50=1.18 and 1.07 μM, respectively) against prostate cancer, and hybrid 23 (EC50=2.08 μM) against breast cancer. These findings demonstrate the high potential of hybridization of artemisinin and estrogens to further improve their anticancer activities and to produce synergistic effects between linked pharmacophores.  相似文献   

4.
Background: Ovarian cancer (OC) is one of the most lethal cancers in women. The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25D3, calcitriol) has anticancer activity in several cancers, including ovarian cancer, but the required pharmacological doses may cause hypercalcemia. We hypothesized that newly developed, low calcemic, vitamin D analogs (an1,25Ds) may be used as anticancer agents instead of calcitriol in ovarian cancer cells. Methods: We used two patient-derived high-grade serous ovarian cancer (HGSOC) cell lines with low (13781) and high (14433) mRNA expression levels of the gene encoding 1,25-dihydroxyvitamin D3 24-hydroxylase CYP24A1, one of the main target genes of calcitriol. We tested the effect of calcitriol and four structurally related series of an1,25Ds (PRI-1906, PRI-1907, PRI-5201, PRI-5202) on cell number, viability, the expression of CYP24A1, and the vitamin D receptor (VDR). Results: CYP24A1 mRNA expression increased in a concentration-dependent manner after treatment with all compounds. In both cell lines, after 4 h, PRI-5202 was the most potent analog (in 13781 cells: EC50 = 2.98 ± 1.10 nmol/L, in 14433 cells: EC50 = 0.92 ± 0.20 nmol/L), while PRI-1907 was the least active one (in 13781 cells: EC50 = n/d, in 14433 cells: EC50 = n/d). This difference among the analogs disappeared after 5 days of treatment. The 13781 cells were more sensitive to the an1,25Ds compared with 14433 cells. The an1,25Ds increased nuclear VDR levels and reduced cell viability, but only in the 13781 cell line. Conclusions: The an1,25Ds had different potencies in the HGSOC cell lines and their efficacy in increasing CYP24A1 expression was cell line- and chemical structure-dependent. Therefore, choosing sensitive cancer cell lines and further optimization of the analogs’ structure might lead to new treatment options against ovarian cancer.  相似文献   

5.
A new series of topsentin analogs, in which the central imidazole ring of the natural lead was replaced by a 1,2,4-oxadiazole moiety, was efficiently synthesized. All derivatives were pre-screened for antiproliferative activity against the National Cancer Institute (NCI-60) cell lines panel. The five most potent compounds were further investigated in various pancreatic ductal adenocarcinoma (PDAC) cell lines, including SUIT-2, Capan-1, and Panc-1 cells, eliciting EC50 values in the micromolar and sub-micromolar range, associated with significant reduction of cell migration. These remarkable results might be explained by the effects of these new topsentin analogues on epithelial-to-mesenchymal transition markers, including SNAIL-1/2 and metalloproteinase-9. Moreover, flow cytometric analysis after Annexin V-FITC and propidium iodide staining demonstrated that these derivatives enhanced apoptosis of PDAC cells. Keeping with these data, the PathScan intracellular signaling and ELISA array revealed cleavage of caspase-3 and PARP and a significant inhibition of GSK3β phosphorylation, suggesting this kinase as a potential downstream target of our novel compounds. This was further supported by a specific assay for the evaluation of GSK3β activity, showing IC50 values for the most active compounds against this enzyme in the micromolar range.  相似文献   

6.
Lysine-specific demethylase 1 (LSD1/KDM1A) oxidatively removes methyl groups from histone proteins, and its aberrant activity has been correlated with cancers including acute myeloid leukemia (AML). We report a novel series of tranylcypromine analogues with a carboxamide at the 4-position of the aryl ring. These compounds, such as 5 a and 5 b with benzyl and phenethylamide substituents, respectively, had potent sub-micromolar IC50 values for the inhibition of LSD1 as well as cell proliferation in a panel of AML cell lines. The dose-dependent increase in cellular expression levels of H3K4me2, CD86, CD11b and CD14 supported a mechanism involving LSD1 inhibition. The tert-butyl and ethyl carbamate derivatives of these tranylcypromines, although inactive in LSD1 inhibition, were of similar potency in cell-based assays with a more rapid onset of action. This suggests that carbamates can act as metabolically labile tranylcypromine prodrugs with superior pharmacokinetics.  相似文献   

7.
With the aim of discovering new anticancer agents, we have designed and synthesized novel α-aminophosphonate derivatives containing a 2-oxoquinoline structure using a convenient one-pot three-component method. The newly synthesized compounds were evaluated for antitumor activities against the A549 (human lung adenocarcinoma cell), HeLa (human cervical carcinoma cell), MCF-7 (human breast cancer cell), and U2OS (human osteosarcoma cell) cancer cell lines in vitro, employing a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The results of pharmacological screening indicated that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most compounds showed more potent inhibitory activities comparable to 5-fluorouracil (5-FU) which was used as a positive control. The mechanism of representative compound 4u (diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(phenyl-amino)methyl)phosphonate) indicated that the compound mainly arrested HeLa cells in S and G2 stages and was accompanied by apoptosis in HeLa cells. This action was confirmed by acridine orange/ethidium bromide staining, Hoechst 33342 staining, and flow cytometry.  相似文献   

8.
Novel compounds were prepared in fair to good yields as human β3‐adrenoceptor (β3‐AR) agonists. In particular, aryloxypropanolamines 7 a – d (EC50=0.57–2.1 nM ) and arylethanolamines 12 a , b , e (EC50=6.38–19.4 nM ) were designed to explore the effects of modifications at the right‐hand side of these molecules on their activity as β3‐AR agonists. Piperidine sulfonamides 15 a – c , e – g (EC50=6.1–36.2 nM ) and piperazine sulfonamide derivatives 20 – 29 (EC50=1.79–49.3 nM ) were examined as compounds bearing a non‐aromatic linker on the right‐ and left‐hand sides of the molecules. Some piperazine sulfonamides were found to be potent and selective β3‐AR agonists, even if the amine nitrogen atom is tertiary and not secondary, as is the case for all β3‐AR agonists reported so far. (S)‐3‐{4‐{N‐{4‐{2‐[2‐Hydroxy‐3‐(4‐hydroxyphenoxy)propylamino]ethyl}phenyl}sulfamoyl}phenoxy}propanoic acid ( 7 d ; EC50=0.57 nM ), (R)‐N‐{4‐[2‐(2‐hydroxy‐2‐phenylethylamino)ethyl]phenyl}‐4‐(3‐octylureido)benzenesulfonamide ( 12 e ; EC50=6.38 nM ), (R)‐2‐[1‐(4‐methoxyphenylsulfonyl)piperidin‐4‐ylamino]‐1‐phenylethanol ( 15 f ; EC50=6.1 nM ), and (S)‐4‐{2‐hydroxy‐3‐[4‐(4‐methoxyphenylsulfonyl)piperazin‐1‐yl]propoxy}phenol ( 25 ; EC50=1.79 nM ) were found to be the most potent β3‐AR agonists of the aryloxypropanolamine, arylethanolamine, piperidine sulfonamide, and piperazine sulfonamide classes, respectively. The two most potent compounds were identified as possible candidates for further development of β3‐AR agonists useful in the treatment of β3‐AR‐mediated pathological conditions.  相似文献   

9.
A group of novel anilinoquinazoline derivatives with variable aryl and heterocyclic substituents at position 6 were synthesized and tested for their EGFR‐inhibitory activity. Aryl and heterocyclic rings were attached to the quinazoline scaffold through different linkages such as imine, amide, and thiourea. Most of the aryl and heterocyclic derivatives showed potent inhibition of wild‐type EGFR with IC50 values in the low nanomolar range. Among these, thiourea derivatives 6 a , 6 b and compound 10 b also retained significant activity toward the gefitinib‐insensitive EGFRT790M/L858R mutant, displaying up to 24‐fold greater potency than gefitinib. In addition, cell growth inhibitory activity was tested against cancer cell lines with wild‐type (KB cells) and mutant EGFR (H1975 cells). Several compounds including 6 a were found to be more potent than the reference compound gefitinib toward both cell lines, as was the case for compound 10 b against H1975 cells. Therefore, compounds 6 a and 10 b in particular may serve as new leads for the development of inhibitors effective against wild‐type EGFR as well as gefitinib‐resistant mutants.  相似文献   

10.
Curcumin and curcuminoids have been discussed frequently due to their promising functional groups (such as scaffolds of α,β-unsaturated β-diketone, α,β-unsaturated ketone and β′-hydroxy-α,β-unsaturated ketone connected with aromatic rings on both sides) that play an important role in various bioactivities, including antioxidant, anti-inflammatory, anti-proliferation and anticancer activity. A series of novel curcuminoid derivatives (a total of 55 new compounds) and three reference compounds were synthesized with good yields using three-step organic synthesis. The anti-proliferative activities of curcumin derivatives were examined for six human cancer cell lines: HeLaS3, KBvin, MCF-7, HepG2, NCI-H460 and NCI-H460/MX20. Compared to the IC50 values of all the synthesized derivatives, most α,β-unsaturated ketones displayed potent anti-proliferative effects against all six human cancer cell lines, whereas β′-hydroxy-α,β-unsaturated ketones and α,β-unsaturated β-diketones presented moderate anti-proliferative effects. Two potent curcuminoid derivatives were found among all the novel derivatives and reference compounds: (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a). These were selected for further analysis after the evaluation of their anti-proliferative effects against all human cancer cell lines. The results of apoptosis assays revealed that the number of dead cells was increased in early apoptosis and late apoptosis, while cell proliferation was also decreased after applying various concentrations of (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) to MCF-7 and HpeG2 cancer cells. Analysis of the gene expression arrays showed that three genes (GADD45B, SESN2 and BBC3) were correlated with the p53 pathway. From the quantitative PCR analysis, it was seen that (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) effectively induced the up-regulated expression of GADD45B, leading to the suppression of MCF-7 cancer cell formation and cell death. Molecular docking analysis was used to predict and sketch the interactions of the GADD45B-α,β-unsaturated ketone complex for help in drug design.  相似文献   

11.
The serine/threonine kinase CK2 modulates the activity of more than 300 proteins and thus plays a crucial role in various physiological and pathophysiological processes including neurodegenerative disorders of the central nervous system and cancer. The enzymatic activity of CK2 is controlled by the equilibrium between the heterotetrameric holoenzyme CK2α2β2 and its monomeric subunits CK2α and CK2β. A series of analogues of W16 ((3aR,4S,10S,10aS)-4-{[(S)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]carbonyl}-10-(3,4,5-trimethoxyphenyl)-4,5,10,10a-tetrahydrofuro[3,4-b]carbazole-1,3(3aH)-dione ((+)- 3 a )) was prepared in an one-pot, three-component Levy reaction. The stereochemistry of the tetracyclic compounds was analyzed. Additionally, the chemically labile anhydride structure of the furocarbazoles 3 was replaced by a more stable imide ( 9 ) and N-methylimide ( 10 ) substructure. The enantiomer (−)- 3 a (Ki=4.9 μM) of the lead compound (+)- 3 a (Ki=31 μM) showed a more than sixfold increased inhibition of the CK2α/CK2β interaction (protein-protein interaction inhibition, PPII) in a microscale thermophoresis (MST) assay. However, (−)- 3 a did not show an increased enzyme inhibition of the CK2α2β2 holoenzyme, the CK2α subunit or the mutated CK2α′ C336S subunit in the capillary electrophoresis assay. In the pyrrolocarbazole series, the imide (−)- 9 a (Ki=3.6 μM) and the N-methylimide (+)- 10 a (Ki=2.8 μM) represent the most promising inhibitors of the CK2α/CK2β interaction. However, neither compound could inhibit enzymatic activity. Unexpectedly, the racemic tetracyclic pyrrolocarbazole (±)- 12 , with a carboxy moiety in the 4-position, displays the highest CK2α/CK2β interaction inhibition (Ki=1.8 μM) of this series of compounds.  相似文献   

12.
In pancreatic β-cells of the line INS-1, glucose uptake and metabolism induce the openings of Ca2+-permeable TRPM3 channels that contribute to the elevation of the intracellular Ca2+ concentration and the fusion of insulin granules with the plasma membrane. Conversely, glucose-induced Ca2+ signals and insulin release are reduced by the activity of the serine/threonine kinase CK2. Therefore, we hypothesized that TRPM3 channels might be regulated by CK2 phosphorylation. We used recombinant TRPM3α2 proteins, native TRPM3 proteins from INS-1 β-cells, and TRPM3-derived oligopeptides to analyze and localize CK2-dependent phosphorylation of TRPM3 channels. The functional consequences of CK2 phosphorylation upon TRPM3-mediated Ca2+ entry were investigated in Fura-2 Ca2+-imaging experiments. Recombinant TRPM3α2 channels expressed in HEK293 cells displayed enhanced Ca2+ entry in the presence of the CK2 inhibitor CX-4945 and their activity was strongly reduced after CK2 overexpression. TRPM3α2 channels were phosphorylated by CK2 in vitro at serine residue 1172. Accordingly, a TRPM3α2 S1172A mutant displayed enhanced Ca2+ entry. The TRPM3-mediated Ca2+ entry in INS-1 β-cells was also strongly increased in the presence of CX-4945 and reduced after overexpression of CK2. Our study shows that CK2-mediated phosphorylation controls TRPM3 channel activity in INS-1 β-cells.  相似文献   

13.
A series of 2-aminothiazole derivatives were designed, synthesized on the basis of bioisosterism strategy and evaluated for their CHK1 inhibitory activity. Most of them exhibited potent CHK1 inhibition, and excellent antiproliferative activity against MV-4-11 and Z-138 cell lines. Systematic structure-activity relationship (SAR) efforts led to the discovery of a promising compound 8 n , which showed potent CHK1 inhibitory activity with IC50 value of 4.25±0.10 nM, excellent antiproliferative activity against MV-4-11 and Z-138 cells with IC50 value of 42.10±5.77 nM and 24.16±6.67 nM, respectively, as well as moderate oral exposure (AUC(0−t)=1076.25 h ⋅ ng/mL) in mice. Additionally, treatment of MV-4-11 cells with compound 8 n for 2 h led to robust inhibition of CHK1 autophosphorylation on serine 296. Furthermore, kinase selectivity assay revealed that 8 n displayed acceptable selectivity toward 15 kinases. These results demonstrated that compound 8 n may be a promising potential anticancer agent for further development.  相似文献   

14.
Long non-coding RNAs (lncRNAs) play important biological roles. Here, the roles of the lncRNA KCNQ1OT1 in cellular senescence and calorie restriction were determined. KCNQ1OT1 knockdown mediated various senescence markers (increased senescence-associated β-galactosidase staining, the p53-p21Cip1/WAF1 pathway, H3K9 trimethylation, and expression of the senescence-associated secretory phenotype) and reactive oxygen species generation via CK2α downregulation in human cancer HCT116 and MCF-7 cells. Additionally, KCNQ1OT1 was downregulated during replicative senescence, and its silencing induced senescence in human lung fibroblast IMR-90 cells. Additionally, an miR-760 mimic suppressed KCNQ1OT1-mediated CK2α upregulation, indicating that KCNQ1OT1 upregulated CK2α by sponging miR-760. Finally, the KCNQ1OT1–miR-760 axis was involved in both lipopolysaccharide-mediated CK2α reduction and calorie restriction (CR)-mediated CK2α induction in these cells. Therefore, for the first time, this study demonstrates that the KCNQ1OT1–miR-760–CK2α pathway plays essential roles in senescence and CR, thereby suggesting that KCNQ1OT1 is a novel therapeutic target for an alternative treatment that mimics the effects of anti-aging and CR.  相似文献   

15.
The ubiquitously expressed Ser/Thr kinase CK2 is a key regulator in a variety of key processes in normal and malignant cells. Due to its distinctive anti-apoptotic and tumor-driving properties, elevated levels of CK2 have frequently been found in tumors of different origin. In recent years, development of CK2 inhibitors has largely been focused on ATP-competitive compounds; however, targeting the CK2α/CK2β interface has emerged as a further concept that might avoid selectivity issues. To address the CK2 subunit interaction site, we have synthesized halogenated CK2β-mimicking cyclic peptides modified with the cell-penetrating peptide sC18 to mediate cellular uptake. We investigated the binding of the resulting chimeric peptides to recombinant human CK2α using a recently developed fluorescence anisotropy assay. The iodinated peptide sC18-I-Pc was identified as a potent CK2α ligand (Ki=0.622 μm ). It was internalized in cells to a high extent and exhibited significant cytotoxicity toward cancerous HeLa cells (IC50=37 μm ) in contrast to non-cancerous HEK-293 cells. The attractive features and functionalities of sC18-I-Pc offer the opportunity for further improvement.  相似文献   

16.
β-pinene is a monoterpene isolated from turpentine oil and numerous other plants’ essential oils, which has a broad spectrum of biological activities. In the current work, six novel β-pinene quaternary ammonium (β-PQA) salts were synthesized and evaluated in vitro for their antifungal, antibacterial and anticancer activities. The in vitro assay results revealed that compounds 4a and 4b presented remarkable antimicrobial activity against the tested fungi and bacteria. In particular, compound 4a showed excellent activities against F. oxysporum f.sp. niveum, P. nicotianae var.nicotianae, R. solani, D. pinea and Fusicoccumaesculi, with EC50 values of 4.50, 10.92, 9.45, 10.82 and 6.34 μg/mL, respectively. Moreover, compound 4a showed the best antibacterial action against E. coli, P. aeruginosa, S. aureus and B. subtilis, with MIC at 2.5, 0.625, 1.25 and 1.25 μg/mL, respectively. The anticancer activity results demonstrated that compounds 4a, 4b, 4c and 4f exhibited remarkable activity against HCT-116 and MCF-7 cell lines, with IC50 values ranged from 1.10 to 25.54 μM. Notably, the compound 4c displayed the strongest cytotoxicity against HCT-116 and MCF-7 cell lines, with the IC50 values of 1.10 and 2.46 μM, respectively. Furthermore, preliminary antimicrobial mechanistic studies revealed that compound 4a might cause mycelium abnormalities of microbial, cell membrane permeability changes and inhibition of the activity of ATP. Altogether, these findings open interesting perspectives to the application of β-PQA salts as a novel leading structure for the development of effective antimicrobial and anticancer agents.  相似文献   

17.
Metformin, apart from its glucose-lowering properties, has also been found to demonstrate anti-cancer properties. Anti-cancer efficacy of metformin depends on its uptake in cancer cells, which is mediated by plasma membrane monoamine transporters (PMAT) and organic cation transporters (OCTs). This study presents an analysis of transporter mediated cellular uptake of ten sulfonamide-based derivatives of metformin in two breast cancer cell lines (MCF-7 and MDA-MB-231). Effects of these compounds on cancer cell growth inhibition were also determined. All examined sulfonamide-based analogues of metformin were characterized by greater cellular uptake in both MCF-7 and MDA-MB-231 cells, and stronger cytotoxic properties than those of metformin. Effective intracellular transport of the examined compounds in MCF-7 cells was accompanied by high cytotoxic activity. For instance, compound 2 with meta-methyl group in the benzene ring inhibited MCF-7 growth at micromolar range (IC50 = 87.7 ± 1.18 µmol/L). Further studies showed that cytotoxicity of sulfonamide-based derivatives of metformin partially results from their ability to induce apoptosis in MCF-7 and MDA-MB-231 cells and arrest cell cycle in the G0/G1 phase. In addition, these compounds were found to inhibit cellular migration in wound healing assay. Importantly, the tested biguanides are more effective in MCF-7 cells at relatively lower concentrations than in MDA-MB-231 cells, which proves that the effectiveness of transporter-mediated accumulation in MCF-7 cells is related to biological effects, including MCF-7 cell growth inhibition, apoptosis induction and cell cycle arrest. In summary, this study supports the hypothesis that effective transporter-mediated cellular uptake of a chemical molecule determines its cytotoxic properties. These results warrant a further investigation of biguanides as putative anti-cancer agents.  相似文献   

18.
A novel series of N-substituted cis- and trans-3-aryl-4-(diethoxyphosphoryl)azetidin-2-ones were synthesized by the Kinugasa reaction of N-methyl- or N-benzyl-(diethyoxyphosphoryl)nitrone and selected aryl alkynes. Stereochemistry of diastereoisomeric adducts was established based on vicinal H3–H4 coupling constants in azetidin-2-one ring. All the obtained azetidin-2-ones were evaluated for the antiviral activity against a broad range of DNA and RNA viruses. Azetidin-2-one trans-11f showed moderate inhibitory activity against human coronavirus (229E) with EC50 = 45 µM. The other isomer cis-11f was active against influenza A virus H1N1 subtype (EC50 = 12 µM by visual CPE score; EC50 = 8.3 µM by TMS score; MCC > 100 µM, CC50 = 39.9 µM). Several azetidin-2-ones 10 and 11 were tested for their cytostatic activity toward nine cancerous cell lines and several of them appeared slightly active for Capan-1, Hap1 and HCT-116 cells values of IC50 in the range 14.5–97.9 µM. Compound trans-11f was identified as adjuvant of oxacillin with significant ability to enhance the efficacy of this antibiotic toward the highly resistant S. aureus strain HEMSA 5. Docking and molecular dynamics simulations showed that enantiomer (3R,4S)-11f can be responsible for the promising activity due to the potency in displacing oxacillin at β-lactamase, thus protecting the antibiotic from undesirable biotransformation.  相似文献   

19.
The aptitude of cyclodextrins (CDs) to form host-guest complexes has prompted an increase in the development of new drug formulations. In this study, the inclusion complexes of pipemidic acid (HPPA), a therapeutic agent for urinary tract infections, with native β-CD were prepared in solid state by kneading method and confirmed by FT-IR and 1H NMR. The inclusion complex formation was also characterized in aqueous solution at different pH via UV-Vis titration and phase solubility studies obtaining the stability constant. The 1:1 stoichiometry was established by a Job plot and the inclusion mechanism was clarified using docking experiments. Finally, the antibacterial activity of HPPA and its inclusion complex was tested on P. aeruginosa, E. coli and S. aureus to determine the respective EC50s and EC90s. The results showed that the antibacterial activity of HPPA:β-CD against E. coli and S. aureus is higher than that of HPPA. Furthermore, HPPA and HPPA:β-CD, tested on human hepatoblastoma HepG2 and MCF-7 cell lines by MTT assay, exhibited, for the first time, antitumor activities, and the complex revealed a higher activity than that of HPPA. The use of β-CD allows an increase in the aqueous solubility of the drug, its bioavailability and then its bioactivity.  相似文献   

20.
Protein kinase CK2, also known as casein kinase-2, is involved in a broad range of physiological events including cell growth, proliferation and suppression of apoptosis which are related to human cancers. A series of compounds were identified as CK2 inhibitors and their inhibitory activities varied depending on their structures. In order to explore the structure-activity correlation of CX-4945 derivatives as inhibitors of CK2, in the present study, a set of ligand- and receptor-based 3D-QSAR models were developed employing Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Index Analysis (CoMSIA). The optimum CoMFA (R(cv) (2) = 0.618, R(pred) (2) = 0.892) and CoMSIA (R(cv) (2) = 0.681, R(pred) (2) = 0.843) models exhibited reasonable statistical characteristics for CX-4945 derivatives. The results indicated that electrostatic effects contributed the most to both CoMFA and CoMSIA models. The combination of docking analysis and molecular dynamics (MD) simulation showed that Leu45, Lys68, Glu81, Val116, Asp175 and Trp176 of CK2 which formed several direct or water-bridged H-bonds with CX-4945 are crucial for CX-4945 derivatives recognition to CK2. These results can offer useful theoretical references for designing more potent CK2 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号