首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究预拉伸变形量对峰值时效态2A14铝合金显微组织、力学性能和腐蚀行为的影响。结果表明:由于预拉伸导致细小弥散的θ′相在基体中大量析出,合金的硬度和强度都明显提升;在峰值时效前引入预拉伸可以明显提高峰值时效硬度并加快到达峰值时效时间;当预拉伸变形量为7.5%时,θ′相的分布明显变得更不均匀,这导致极限抗拉强度的下降;随着预拉伸变形量增加,合金塑性、冲击韧性和剥落腐蚀抗力均逐渐下降,但晶间腐蚀抗力先提高后下降。  相似文献   

2.
研究了不同预轧制变形时效对固溶态2055铝锂合金组织和力学性能的影响。结果表明,对固溶2055铝锂合金在时效前进行预轧制变形可显著缩短峰值时效时间、提高合金硬度和强度。当预轧制变形量为0、3%和10%时,2055铝锂合金分别在155℃下时效40、30和28 h达到峰值硬度(HV),分别为207.66、215.31和220.07。10%预轧制+155℃×28 h峰时效合金的屈服强度、抗拉强度分别达到562.64 MPa和622.04 MPa,比未预轧制、3%预轧制峰时效合金分别提高了67%、21%和43%、8%,大塑性变形诱导高密度位错促进析出相大量均匀弥散析出是其力学性能提高的主要原因。  相似文献   

3.
采用维氏硬度测试、拉伸性能测试等方法研究了不同拉伸预变形量对2219铝合金在177℃时效时的力学性能影响,并利用光学显微镜、扫描电镜和透射电镜观察了其微观形貌和显微组织。结果表明:合金经过预拉伸变形后晶粒伸长,时效后晶粒中析出大量的正交片状析出相,合金强度明显提高;增大预变形量可以促进过渡相θ″向θ'的转变析出,15%预拉伸样品在6 h即达到峰值时效,屈服强度和伸长率由时效前的322.9 MPa、14.0%变为368.8 MPa和9.6%;在同一时效时间,合金的强度随着预拉伸量的增加而提高,伸长率降低。  相似文献   

4.
采用显微硬度测试、拉伸试验、金相观察和TEM观察,研究冷塑性变形对Mg-6%Zn-1%Mn(ZM61)合金时效硬化和力学性能的影响。在420℃固溶处理1h后,对ZM61挤压棒材试样进行室温拉伸变形,塑性应变有3种:0、5%和10%,预变形后再进行人工时效。时效硬化曲线表明:预变形可以显著加快硬化速率且提高峰值硬度;然而,当应变量由5%增加到10%后,峰值硬度并未增加。室温拉伸性能表明:预变形量增加,屈服强度和抗拉强度增加,伸长率略有降低,且屈服强度的增加幅度大于抗拉强度的。金相组织观察表明:当预变形应变量为5%时,金相组织中未观察到孪晶;预变形10%的组织中出现了大量的孪晶。TEM观察表明:预变形可以增加峰时效态组织中β1′杆状相的数量。  相似文献   

5.
Al-Mg-Si合金的形变热处理研究   总被引:4,自引:2,他引:4  
Al—Mg—Si合金中,随着Mg、si含量增加,在一定范围内可以使合金的抗拉强度提高,但使塑性下降。同一合金的自然时效状态的强度比人工时效状态的低,而塑性要高。固溶温度从510℃提高到530℃可以提高合金的强度;合金经形变热处理后,硬度提高,随变形量的增加,材料的起始硬度提高,时效峰值时间提前,但到达峰时效后硬度下降较快;不同变形量的时效峰值时间不变;在相同的变形量下,时效温度提高使时效峰值时间提前,且时效温度越高,达到峰时效的时间越短;在175℃时效时。经过变形的合金时效峰值时间缩短到约3h,而未变形的合金的时效峰值时间为8h。  相似文献   

6.
采用维氏硬度测试、拉伸性能测试等方法研究了不同拉伸预变形量对2219铝合金在177℃时效时的力学性能影响,并利用光学显微镜、扫描电镜和透射电镜观察了其微观形貌和显微组织。结果表明:合金经过预拉伸变形后晶粒伸长,时效后晶粒中析出大量的正交片状析出相,合金强度明显提高;增大预变形量可以促进过渡相θ″向θ'的转变析出,15%预拉伸样品在6 h即达到峰值时效,屈服强度和伸长率由时效前的322.9 MPa、14.0%变为368.8 MPa和9.6%;在同一时效时间,合金的强度随着预拉伸量的增加而提高,伸长率降低。  相似文献   

7.
许峰  胡可  罗凤翔 《金属热处理》2019,44(9):140-146
采用扫描电镜(SEM)、透射电镜(TEM)、拉伸试验机等手段,研究了预变形和时效处理对Al-Mg-Si-Cu合金显微组织和力学性能的影响。结果表明,时效温度为115~175℃时,Al-Mg-Si-Cu合金的硬度会随着轧制变形量的增加而增大;相同变形量下时效温度的升高可以缩短合金到达峰值硬度的时间;经过5%~80%轧制变形后Al-Mg-Si-Cu合金的峰值硬度都相较于传统T6热处理态高。在时效温度为145℃和175℃时,合金的抗拉强度和屈服强度会随着轧制变形量的增加而增大,而断后伸长率在变形量为20%及以上时保持在6%以上,时效温度175℃、变形量为20%时即可获得与传统T6态合金相当的强塑性。Al-Mg-Si-Cu合金在轧制变形过程中会以位错、位错缠结、位错胞和亚晶的过程发生组织结构演变,在变形量为20%及以下时,合金中主要为尺寸较大的β″相、L相和颗粒状第二相;随着变形量增加,第二相尺寸减小并在变形量为80%时形成沿晶面缺陷生长的连续第二相。通过变形+时效处理相结合的方法可以对Al-Mg-Si-Cu合金的强塑性进行调节,从而获得强度和塑性兼备的6000系铝合金。  相似文献   

8.
时效对Cu-2.0Ni-0.5Si合金组织和性能的影响   总被引:1,自引:0,他引:1  
研究了时效温度和时效时间对不同冷变形条件下Cu 2.0Ni 0.5Si合金组织和性能的影响.结果表明,合金经900 ℃固溶,在经不同冷变形后时效,第二相呈弥散分布,当变形量为80%,时效温度为500 ℃,时效时间为1 h时,其显微硬度HV达到250,电导率达到22.625 MS/m,与未经过预冷变形的合金时效相比,合金能获得较高的显微硬度与电导率.时效前的预冷变形能够有力的促进合金在时效过程中第二相的析出,从而提高合金的显微硬度和电导率.合金经40%预冷变形,450 ℃×4 h时效后,其抗拉强度达到620 MPa.拉伸试样断口表现出明显的塑性断裂特征.  相似文献   

9.
研究了时效前不同冷轧预变形量(ε=7%,14%,20%,27%)对1460合金沉淀强化过程的影响。当冷轧变形量增加至20%时,合金中出现位错墙(dense dislocation wall)。位错为T1相提供了形核位置,使得合金中T1相的数量增加,同时尺寸保持在100 nm左右,缩短了峰值时效时间。27%冷轧变形+160℃/20 h时效能提高合金的强度,同时塑性较好,此时合金的抗拉强度和延伸率分别为590 MPa和8%。  相似文献   

10.
拉伸与轧制预变形对2519A铝合金组织与力学性能的影响   总被引:1,自引:0,他引:1  
通过硬度测试、拉伸测试、透射电镜分析以及织构测试等手段,研究拉伸和冷轧两种不同预变形方式对2519A铝合金165℃时效后组织与力学性能的影响。结果表明:适当的变形量均使θ′相尺寸细小、密度增加,而变形量过大使θ′相分布变得较不均匀,合金强度提高不大,而塑性降低;6%拉伸预变形和7%冷轧预变形使合金板材峰值时效抗拉强度、屈服强度和伸长率分别为472MPa、404MPa、15.6%和472MPa、417MPa、9.4%,二者的抗拉强度基本相同,但前者的屈服强度低、塑性高;两种预变形方式下板材织构类型相同,取向密度无明显差别;合金板材屈服强度和伸长率的差别由第二相θ′相的数量、尺寸和分布所确定。  相似文献   

11.
预变形对2519铝合金组织与力学性能的影响   总被引:5,自引:0,他引:5  
通过拉伸测试、显微硬度测试、透射电镜及扫描电镜分析等手段研究了预变形对2519铝合金组织与力学性能的影响.结果表明:预变形降低了合金于180℃时效第一阶段的硬化效果,提高了合金峰值硬度及强度,缩短了峰值时效时间.预变形合金强度、硬度的提高是由于θ′相的数目增加和尺寸减小.细小弥散的θ′相有利于阻碍位错的运动,提高了合金的强度,同时也降低了合金的塑性.综合考虑合金的强度和塑性,2519铝合金时效前的预变形以15%为宜.  相似文献   

12.
通过对挤压后的Al-4.5Cu-0.8Mg合金棒材进行变形量为0、2%和8%的预拉伸处理,然后进行人工时效处理,研究预变形对Al-4.5Cu-0.8Mg合金人工时效后的硬度、室温拉伸性能和显微组织的影响。结果表明,随着预变形量的增加,合金的时效响应加快,其强度达到峰值的时间逐渐缩短,且峰值强度明显提高。时效前的预变形处理能显著细化合金沉淀析出相,并随预变形程度的增加,析出强化相越弥散、越细小,这有利于阻碍位错的运动和提高合金的强度。  相似文献   

13.
将挤压态Mg-4Gd合金沿挤压方向进行10%预拉伸处理,然后研究了时效处理对预变形后合金组织和力学性能的影响。结果表明:预拉伸处理产生加工硬化的同时促进了变形镁合金中灰暗过渡相及明亮平衡相的形核,时效过程加速了过渡相的形成及其向平衡相的转化。随着时效温度升高,明亮平衡相的平均尺寸增加。预拉伸试样经时效处理可提高力学性能,当时效工艺为210℃×24 h时,合金综合力学性能最佳,其硬度、屈服强度、抗拉强度和伸长率分别为66.65 HV0.1、137.4 MPa、245.4 MPa和22.1%;时效温度升高使得合金的峰值硬度降低,但达到硬度峰值所需时间缩短且强度和伸长率均保持在较高水平。  相似文献   

14.
La,Fe(或Co)/Ti对Cu-Cr-Zr合金时效特性的影响   总被引:10,自引:0,他引:10  
研制了新型集成电路引线框架Cu-Cr-Zr系列合金,通过电导率、硬度、抗拉强度测试以及透射电镜观察,考察了微量合金元素La,Fe/Ti,Co/Ti元素以及时效工艺对合金性能的影响。结果表明:稀土元素La可以改善A合金(Cu-Cr-Zr-Zn)的硬度及导电率;加入Fe/Ti,Co/Ti元素,大大提高了合金的强度和硬度,并使其时效的强度及硬度峰值延后。在970℃固溶处理、70%冷变形及不同温度时效2h后,A合金(Cu-Cr-Zr-Zn)及B合金(Cu-Cr-Zr-Zn-La)在450℃时达到硬度和强度峰值,分别为HV1770MPa和525MPa及HV1840MPa和554MPa,电导率分别为78%和80%IACS;在970℃固溶处理,60%冷变形,500℃时效2h,50%冷变形及不同温度2次时效2h后,C合金(Cu-Cr-Zr-Zn-Fe-Ti-La)及D合金(Cu-Cr-Zr-Zn-Co-Ti-La)在450℃时达到硬度和强度峰值,分别为HV2120MPa,683MPa及HV2040MPa和651MPa,电导率分别为65%和70%IACS。  相似文献   

15.
试验研究了变形时效对6061铝合金显微组织和时效硬化特性的影响。结果表明,对6061铝合金进行5%~80%轧制变形,时效温度的升高会缩短峰值硬度出现的时间,且变形量越大出现峰值硬度的时间越短;变形量在20%及以上时,6061铝合金的峰值硬度高于T6态的;变形量20%以下时,6061铝合金的峰值硬度低于T6态的。在不同时效温度下,6061铝合金的抗拉强度和屈服强度都会随着变形量增加而增大。当时效温度为180℃时,较小变形量(20%)的6061铝合金的强度和塑性相当于T6态的;40%及以上变形量下6061铝合金的强度和塑性都明显高于T6态的。对6061铝合金进行变形时效处理,在位错强化、析出强化以及晶体缺陷作用下可以获得强度和塑性兼备的6061铝合金材料。  相似文献   

16.
本文研究了时效前不同冷轧预变形量(ε=7%,14%,20%,27%)对1460合金沉淀强化过程的影响。当冷轧变形量增加至20%时,合金中出现位错墙(Dense Dislocation Wall)。位错为T1相提供了形核位置,使得合金中T1相的数量增加同时尺寸保持在100 nm 左右,缩短了时效峰值时间。27%冷轧变形+160 ℃/12 h时效能提高合金的强度,同时塑性较好,此时合金的抗拉强度和延伸率分别为590 MPa和8%。  相似文献   

17.
研究不同时效制度和预拉伸永久形变量对6101B铝合金组织及性能的影响。结果表明:随着时效进程的增加(欠时效-峰值时效-过时效),合金的电导率上升,强度先上升后下降。预拉伸能够促进第二相的析出,增加合金的强度,提高电导率;当预拉伸形变量为5%,时效制度为(260±3)℃×6 h时,合金的综合性能最佳。  相似文献   

18.
采用大气熔炼铸造及热变形方法制备了Al-4.5Cu-1Li-0.7Mg-1Zn-0.3Ag-0.3Mn-0.2Zr新型铝锂合金板材。通过维氏硬度、拉伸性能、扫描电镜、透射电镜等方法,研究了固溶后不同冷轧预变形量对显微组织和力学性能影响。结果表明,时效前的冷轧预变形量有效促进了新型铝锂基体合金中T1(Al2CuLi)相的析出与均匀分布,减少了θ′(Al2Cu)相的体积分数。冷轧预变形量的增加,缩短了峰时效时间,晶界析出相由连续析出变为非连续析出,无沉淀析出区宽度变小。当冷轧预变形量为15%时,时效态合金的屈服强度与抗拉强度分别达到了668 MPa、690 MPa,延伸率保持在7.9%。  相似文献   

19.
利用透射电镜、拉伸试验等手段,研究了时效温度、时效时间和预变形量对2195铝锂合金显微组织和力学性能的影响,优化了铝锂合金的时效处理工艺。结果表明:T6态和T8态铝锂合金的硬度均会随着时效时间的延长先增加后减小,经过预变形处理后铝锂合金的峰值硬度对应的时效时间缩短;随着时效时间的延长,T6态和T8态铝锂合金的抗拉强度、屈服强度和断后伸长率的变化趋势相同,经过预变形处理的T8态(预变形量5%+175℃/36 h)铝锂合金的峰值抗拉强度、峰值屈服强度和对应断后伸长率较T6态(175℃/48h)铝锂合金分别增加了11.58%、22.97%和17.78%。T6态和T8态铝锂合金中均存在颗粒状δ′相、针状θ′相、类球形δ′/β′复合相和针状T1相,且后者的T1相更加细小、数量更多、分布更加均匀。2195铝锂合金适宜的时效工艺和预变形量为175℃/36 h+5%。  相似文献   

20.
通过显微硬度测试、电导率测试、拉伸力学性能测试以及透射电镜观察等研究预时效温度对2519铝合金力学性能和电导率的影响.结果表明:随着预时效温度的升高,2519铝合金到达峰值时效的时间缩短,峰值硬度降低;经135 ℃预时效的合金具有较大的抗拉强度和屈服强度,其强度分别为490和442 MPa,但其伸长率仅为7.0%;经165 ℃预时效的合金具有较好的综合力学性能,其中抗拉强度、屈服强度和伸长率分别为480 MPa、435 MPa和10.5%;当预时效温度大于165 ℃时,合金电导率随预时效温度的升高而升高;当预时效温度小于 165 ℃时,合金电导率随温度的升高逐渐降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号