首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
An in vitro model of CD34+CD38- stem cell (SC) differentiation in postnatal cultured thymic epithelia fragment (CTEF) cocultures is described. Sequential phenotypic analysis of the progeny of the SC-CTEF demonstrated predominantly thymocytes and minor populations of promyelocytes, monocytes and natural killer cells. Triple-positive CD3+CD4+CD8+, double-positive CD4+CD8+, and mature single-positive CD4+ and CD8+ T cells, which were TCR alpha beta+, were identified indicating normal thymocyte maturation. In kinetic studies, mature single-positive CD4+ T cells increased from 29% of total cells at one week to 54% at four weeks of coculture. These findings demonstrate that coculture of bone marrow-derived SC and allogeneic cultured thymic epithelia in vitro results in continuous normal predominantly thymocyte differentiation. The SC-CTEF cocultures were then infected with two different strains of human immunodeficiency virus. CD4+ thymocytes were markedly decreased. However, inhibition of early thymocyte maturation steps was also suggested by the presence of increased triple-negative and CD44+CD25-CD3-thymocytes and decreased CD44+CD25+ thymocytes. This model system of thymocyte maturation will be useful in the evaluation of primary T cell immunodeficiency disorders, gene therapy of SC and pharmacological augmentation of thymic function.  相似文献   

3.
Erythropoietin (EPO) is a factor essential for erythroid cell proliferation, differentiation, and survival. The production of EPO by the kidneys in response to hypoxia and anemia is well documented. To determine whether EPO is also produced by hematopoietic cells, we analyzed the expression of EPO in normal human hematopoietic progenitors and in their progeny. Undifferentiated CD34(+)lin- hematopoietic progenitors do not have detectable EPO mRNA. Differentiating CD34(+) cells that are stimulated with recombinant human EPO in serum-free liquid cultures express both EPO and EPO receptor (EPOR). Because CD34(+) cells represent a heterogeneous cell population, we analyzed individual burst-forming units-erythroid (BFU-E) and nonerythroid colony-forming unit-granulocyte-macrophage colonies for EPO mRNA. Only BFU-E colonies were positive for EPO mRNA. Lysates from pooled BFU-E colonies stained positively for EPO by immunoblotting. To further confirm the intrinsic nature of erythroid EPO, we replaced extrinsic EPO in erythroid colony cultures with EPO-mimicking peptide (EMP). We show EPO expression in the EMP-stimulated BFU-Es at both mRNA and protein levels. Stimulation of bone marrow mononuclear cells (BMMCs) with EMP upregulated EPO expression. Furthermore, we found EPO and EPOR mRNAs as well as EPO protein in K562 cells, a human erythroleukemia cell line. Stimulation of K562 cells with EMP upregulated EPO expression. We suggest that EPO of erythroid origin may have a role in the regulation of erythropoiesis.  相似文献   

4.
5.
The escape of malignant cells from the immune response against the tumor may result from a defective differentiation or function of professional antigen-presenting cells (APC), ie, dendritic cells (DC). To test this hypothesis, the effect of human renal cell carcinoma cell lines (RCC) on the development of DC from CD34(+) progenitors was investigated in vitro. RCC cell lines were found to release soluble factors that inhibit the differentiation of CD34(+) cells into DC and trigger their commitment towards monocytic cells (CD14(+)CD64(+)CD1a-CD86(-)CD80(-)HLA-D Rlow) with a potent phagocytic capacity but lacking APC function. RCC CM were found to act on the two distinct subpopulations emerging in the culture at day 6 ([CD14(+)CD1a-] and [CD14(-)CD1a+]) by inhibiting the differentiation into DC of [CD14(+)CD1a-] precursors and blocking the acquisition of APC function of the [CD14(-)CD1a+] derived DC. Interleukin-6 (IL-6) and macrophage colony-stimulating factor (M-CSF) were found to be responsible for this phenomenon: antibodies against IL-6 and M-CSF abrogated the inhibitory effects of RCC CM; and recombinant IL-6 and/or M-CSF inhibited the differentiation of DC similarly to RCC CM. The inhibition of DC differentiation by RCC CM was preceeded by an induction of M-CSF receptor (M-CSFR; CD115) and a loss of granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR; CD116) expression at the surface of CD34(+) cells, two phenomenon reversed by anti-IL-6/IL-6R and anti-M-CSF antibodies, respectively. Finally, a panel of tumor cell lines producing IL-6 and M-CSF induced similar effects. Taken together, the results suggest that the inhibition of DC development could represent a frequent mechanism by which tumor cells will escape immune recognition.  相似文献   

6.
CD164 is a novel 80- to 90-kD mucin-like molecule expressed by human CD34(+) hematopoietic progenitor cells. Our previous results suggest that this receptor may play a key role in hematopoiesis by facilitating the adhesion of CD34(+) cells to bone marrow stroma and by negatively regulating CD34(+) hematopoietic progenitor cell growth. These functional effects are mediated by at least two spatially distinct epitopes, defined by the monoclonal antibodies (MoAbs), 103B2/9E10 and 105A5. In this report, we show that these MoAbs, together with two other CD164 MoAbs, N6B6 and 67D2, show distinct patterns of reactivity when analyzed on hematopoietic cells from normal human bone marrow, umbilical cord blood, and peripheral blood. Flow cytometric analyses revealed that, on average, 63% to 82% of human bone marrow and 55% to 93% of cord blood CD34(+) cells are CD164(+), with expression of the 105A5 epitope being more variable than that of the other identified epitopes. Extensive multiparameter flow cytometric analyses were performed on cells expressing the 103B2/9E10 functional epitope. These analyses showed that the majority (>90%) of CD34(+) human bone marrow and cord blood cells that were CD38(lo/-) or that coexpressed AC133, CD90(Thy-1), CD117(c-kit), or CD135(FLT-3) were CD164(103B2/9E10)+. This CD164 epitope was generally detected on a significant proportion of CD34(+)CD71(lo/-) or CD34(+)CD33(lo/-) cells. In accord with our previous in vitro progenitor assay data, these phenotypes suggest that the CD164(103B2/9E10) epitope is expressed by a very primitive hematopoietic progenitor cell subset. It is of particular interest to note that the CD34(+)CD164(103B2/9E10)lo/- cells in bone marrow are mainly CD19(+) B-cell precursors, with the CD164(103B2/9E10) epitope subsequently appearing on CD34(lo/-)CD19(+) and CD34(lo/-)CD20(+) B cells in bone marrow, but being virtually absent from B cells in the peripheral blood. Further analyses of the CD34(lo/-)CD164(103B2/9E10)+ subsets indicated that one of the most prominent populations consists of maturing erythroid cells. The expression of the CD164(103B2/9E10) epitope precedes the appearance of the glycophorin C, glycophorin A, and band III erythroid lineage markers but is lost on terminal differentiation of the erythroid cells. Expression of this CD164(103B2/9E10) epitope is also found on developing myelomonocytic cells in bone marrow, being downregulated on mature neutrophils but maintained on monocytes in the peripheral blood. We have extended these studies further by identifying Pl artificial chromosome (PAC) clones containing the CD164 gene and have used these to localize the CD164 gene specifically to human chromosome 6q21.  相似文献   

7.
Macrophages and dendritic cells derive from a hematopoietic stem cell and the existence of a common committed progenitor has been hypothesized. We have recently found in normal human marrow a subset of CD34(+) cells that constitutively expresses HLA-DR and low levels of CD86, a natural ligand for the T cell costimulation receptor CD28. This CD34(+) subset can elicit responses from allogeneic T cells. In this study, we show that CD34(+)/CD86(+) cells can also present tetanus toxoid antigen to memory CD4(+) T cells. CD86 is expressed at low levels in macrophages and high levels in dendritic cells. Therefore, we have tested the hypothesis that CD34(+)/CD86(+) cells are the common precursors of both macrophages and dendritic cells. CD34(+)/CD86(+) marrow cells cultured in granulocyte-macrophage colony-stimulating factor (GM-CSF)-generated macrophages. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF generated a predominant population of granulocytes. CD34(+)/CD86(+) cells cultured in GM-CSF plus tumor necrosis factor-alpha (TNF-alpha) generated almost exclusively CD1a+/CD83(+) dendritic cells. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF plus TNF-alpha generated a variety of cell types, including a small population of dendritic cells. In addition, CD34(+)/CD86(+) cells cultured in granulocyte colony-stimulating factor failed to generate CD15(+) granulocytes. Therefore, CD34(+)/CD86(+) cells are committed precursors of both macrophages and dendritic cells. The ontogeny of dendritic cells was recapitulated by stimulation of CD34(+)/CD86(-) cells with TNF-alpha that induced expression of CD86. Subsequent costimulation of CD86(+) cells with GM-CSF plus TNF-alpha lead to expression of CD83 and produced terminal dendritic cell differentiation. Thus, expression of CD86 on hematopoietic progenitor cells is regulated by TNF-alpha and denotes differentiation towards the macrophage or dendritic cell lineages.  相似文献   

8.
Evaluation of candidate genes for stem cell gene therapy for acquired immunodeficiency syndrome (AIDS) has been limited by the difficulty of supporting in vitro T-cell differentiation of genetically modified hematopoietic progenitor cells. Using a novel thymic stromal culture technique, we evaluated the ability of a hairpin ribozyme specific for simian immunodeficiency virus (SIV) and human immunodeficiency virus type 2 (HIV-2) to inhibit viral replication in T lymphocytes derived from transduced CD34+ progenitor cells. Retroviral transduction of rhesus macaque CD34+ progenitor cells with a retroviral vector (p9456t) encoding the SIV-specific ribozyme and the selectable marker neomycin phosphotransferase in the presence of bone marrow stroma and in the absence of exogenous cytokines resulted in efficient transduction of both colony-forming units and long-term culture-initiating cells, with transduction efficiencies ranging between 21% and 56%. After transduction, CD34+ cells were cultured on rhesus thymic stromal culture (to support in vitro differentiation of T cells) or in the presence of cytokines (to support differentiation of macrophage-like cells). After expansion and selection with the neomycin analog G418, cells derived from transduced progenitor cells were challenged with SIV. CD4+ T cells derived from CD34+ hematopoietic cells transduced with the ribozyme vector p9456t were highly resistant to challenge with SIV, exhibiting up to a 500-fold decrease in SIV replication, even after high multiplicities of infection. Macrophages derived from CD34+ cells transduced with the 9456 ribozyme exhibited a comparable level of inhibition of SIV replication. These results show that a hairpin ribozyme introduced into CD34+ hematopoietic progenitor cells can retain the ability to inhibit AIDS virus replication after T-cell differentiation and support the feasibility of intracellular immunization of hematopoietic stem cells against infection with HIV and SIV. Protection of multiple hematopoietic lineages with the SIV-specific ribozyme should permit analysis of stem cell gene therapy for AIDS in the SIV/macaque model.  相似文献   

9.
Human hematopoietic stem cells are pluripotent, ie, capable of producing both lymphoid and myeloid progeny, and are therefore used for transplantation and gene therapy. An in vitro culture system was developed to study the multi-lineage developmental potential of a candidate human hematopoietic stem cell population, CD34+CD38- cells. CD34+CD38- cells cocultivated on the murine stromal line S17 generated predominantly CD19(+) B-cell progenitors. Transfer of cells from S17 stroma to myeloid-specific conditions ("switch culture") showed that a fraction of the immunophenotypically uncommitted CD19- cells generated on S17 stroma had myeloid potential (defined by expression of CD33 and generation of colony-forming unit-cells). Using the switch culture system, single CD34+CD38- cells were assessed for their lymphoid and myeloid potential. Nineteen of 50 (38%) clones generated from single CD34+CD38- cells possessed both B-lymphoid and myeloid potential. 94.7% of the CD34+CD38- cells with lympho-myeloid potential were late-proliferating (clonal appearance after 30 days), demonstrating that pluripotentiality is detected significantly more often in quiescent progenitors than in cytokine-responsive cells (P = .00002). The S17/switch culture system permits the in vitro assessment of the pluripotentiality of single human hematopoietic cells.  相似文献   

10.
One obstacle to retrovirus-mediated gene therapy for human hematopoietic disorders is the low efficiency of gene transfer into pluripotent hematopoietic stem cells (HSC). We have previously shown a direct correlation between retrovirus receptor mRNA levels in mouse HSC and the efficiency with which they are transduced. In the present study, we assayed retrovirus receptor mRNA levels in a variety of mouse and human HSC populations to identify HSC which may be more competent for retrovirus transduction. The highest levels of amphotropic retrovirus receptor (amphoR) mRNA were found in cryopreserved human cord blood HSC. The level of amphoR mRNA in Lin- CD34(+) CD38(-) cells isolated from frozen cord blood was 12-fold higher than the level in fresh cord blood Lin- CD34(+) CD38(-) cells. In mice, the level of amphoR mRNA in HSC from the bone marrow (BM) of mice treated with stem cell factor and granulocyte-colony stimulating factor was 2.8- to 7.8-fold higher than in HSC from the BM of untreated mice. These findings suggest that HSC from frozen cord blood and cytokine-mobilized BM may be superior targets for amphotropic retrovirus transduction compared with HSC from untreated adult BM.  相似文献   

11.
Transduction of hematopoietic stem cells with genes that inhibit human immunodeficiency virus (HIV) replication has the potential to reconstitute immune function in individuals with AIDS. We evaluated the ability of an autoregulated gene, antitat, to inhibit replication of simian immunodeficiency virus (SIV) and HIV type 1 (HIV-1) in hematopoietic cells derived from transduced progenitor cells. The antitat gene expresses an antiviral RNA encoding polymeric Tat activation response elements in combination with an antisense tat moiety under the control of the HIV-1 long terminal repeat. CD34+ hematopoietic progenitor cells were transduced with a retroviral vector containing the antitat gene and then cultured under conditions that support in vitro differentiation of T cells or macrophage-like cells. Rhesus macaque CD4+ T cells and macrophage-like cells derived from CD34+ bone marrow cells transduced with the antitat gene were highly resistant to challenge with SIV, reflecting a 2- to 3-log reduction in peak SIV replication compared with controls. Similarly, human CD4+ T cells derived from CD34+ cord blood cells transduced with antitat were also resistant to infection with HIV-1. No evidence for toxicity of the antitat gene was observed in any of five different lineages derived from transduced hematopoietic cells. These results demonstrate that a candidate therapeutic gene introduced into hematopoietic progenitor cells can retain the ability to inhibit AIDS virus replication following T-cell differentiation and support the potential use of the antitat gene for stem cell gene therapy.  相似文献   

12.
13.
Eosinophil differentiation is thought to occur by the action of interleukin (IL)-5 on CD34(+) progenitor cells. The allergen-induced increase in eosinophil numbers in isolated airway preparations in vitro, and detection of increased numbers of circulating CD34(+) cells in atopic subjects, led us to the hypothesis that the eosinophil infiltration of the airway in asthma may result from local mucosal differentiation, in addition to recruitment from the bone marrow. We examined CD34(+) cell numbers by immunohistochemistry and IL-5 receptor alpha (IL-5Ralpha) messenger RNA (mRNA) expression by in situ hybridization in bronchial biopsies from atopic asthmatic patients, and from atopic and nonatopic control subjects. CD34(+) cell numbers were increased in the airway in atopic asthmatic and atopic nonasthmatic subjects. In contrast, CD34(+)/ IL-5Ralpha mRNA+ cells were increased in asthmatic subjects when compared with both atopic and nonatopic control subjects. Airway numbers of CD34(+)/IL-5Ralpha mRNA+ cells were correlated to airway caliber in asthmatic subjects and to eosinophil numbers. These findings support the concept that eosinophils may differentiate locally in the airway in asthma.  相似文献   

14.
Recombinant adeno-associated viruses (rAAV) have been proposed to be gene transfer vehicles for hematopoietic stem cells with advantages over other virus-based systems due to their high titers and relative lack of dependence on cell cycle for target cell integration. We evaluated rAAV vector containing a LacZ reporter gene under the control of a cytomegalovirus (CMV) promoter in the context of primary human CD34+CD2- progenitor cells induced to undergo T-cell differentiation using an in vitro T-lymphopoiesis system. Target cells from either adult bone marrow or umbilical cord blood were efficiently transduced, and 71% to 79% CD2+ cells expressed a LacZ marker gene mRNA and produced LacZ-encoded protein after exposure to rAAV-CMV-LacZ. The impact of transgene expression on the differentiation of T cells was assessed by sequential quantitation of immunophenotypic subsets of virus-exposed cells and no alteration was noted compared with control. The durability of transgene expression was assessed and found to decay by day 35 with kinetics dependent on the multiplicity of infection. In addition, vector DNA was absent from CD4 or CD8 subselected CD3+ cells by DNA-polymerase chain reaction. These data suggest that rAAV vectors may result in robust transgene expression in primitive cells undergoing T-cell lineage commitment without toxicity or alteration in the pattern of T-cell differentiation. However, expression is transient and integration of the transgene unlikely. Recombinant AAV vectors are potentially valuable gene transfer tools for the genetic manipulation of events during T-cell ontogony but their potential in gene therapy strategies for diseases such as acquired immunodeficiency syndrome is limited.  相似文献   

15.
16.
Cytokines produced by stromal cells induce the proliferation and differentiation of hematopoietic cells in the marrow microenvironment. We hypothesized that cross-talk between hematopoietic cells at different stages of differentiation and stromal cells influences stromal cytokine production and is responsible for maintaining steady-state hematopoiesis and responding to stress situations. We show that coculture of primitive CD34(+) cells in contact with or separated by a transwell membrane from irradiated human bone marrow stromal layers induces a fourfold to fivefold increase in interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF) levels in the stromal supernatant (SN) during the first week. Levels of both cytokines decreased to baseline after coculture of CD34(+) cells for 3 to 5 weeks. Coculture of more mature CD15(+)/CD14(-) myeloid precursors induced only a transient 1.5- to 2-fold increase in IL-6 and G-CSF at 48 hours. Neither CD34(+) nor CD15(+)/CD14(-) cells produced IL-6, G-CSF, IL-1beta, or tumor necrosis factor alpha. When CD34(+) cells were cultured in methylcellulose medium supplemented with cytokines at concentrations found in stromal SN or supplemented with stromal SN, a fourfold to fivefold increase in colony formation was seen over cultures supplemented with erythropoietin (EPO) only. When cultures were supplemented with the increased concentrations of IL-6 and G-CSF detected in cocultures of stroma and CD34(+) cells or when CD34(+) cells were cocultured in methylcellulose medium in a transwell above a stromal layer, a further increase in the number and size of colonies was seen. The colony-forming unit-granulocyte-macrophage-stimulating activity of stromal SN was neutralized by antibodies against G-CSF or IL-6. These studies indicate that primitive CD34(+) progenitors provide a soluble positive feedback signal to induce cytokine production by stromal cells and that the observed increase in cytokine levels is biologically relevant.  相似文献   

17.
Chronic myelogenous leukemia (CML) is characterized by the Philadelphia (Ph) translocation and BCR/ABL gene rearrangement which occur in a pluripotent hematopoietic progenitor cell. Ph-negative (Ph-) hematopoiesis can be restored in vivo after treatment with -interferon or intensive chemotherapy, suggesting that normal stem and progenitor cells coexist with the Ph+ clone. We have previously shown that Ph- progenitors are highly enriched in the CD34(+)HLA-DR- fraction from early chronic phase (ECP) CML patients. Previous studies have suggested that the Ph-translocation represents a secondary clonal hit occurring in an already clonally mutated Ph- progenitor or stem cells, leaving the unanswered question whether Ph- CD34(+)HLA-DR- progenitors are normal. To show the clonal nature of Ph- CD34(+)HLA-DR- CML progenitors, we have compared the expression of BCR/ABL mRNA with X-chromosome inactivation patterns (HUMARA) in mononuclear cells and in CD34(+)HLA-DR+ and CD34(+)HLA-DR- progenitors in marrow and blood obtained from 11 female CML patients (8 in chronic phase and 3 in accelerated phase [AP] disease). Steady-state marrow-derived BCR/ABL mRNA-, CD34(+)HLA-DR- progenitors had polyclonal X-chromosome inactivation patterns in 2 of 2 patients. The same polyclonal pattern was found in the progeny of CD34(+)HLA-DR- derived long-term culture-initiating cells. Mobilization with intensive chemotherapy induced a Ph-, BCR/ABL mRNA- and polyclonal state in the CD34(+)HLA-DR- and CD34(+)HLA-DR+ progenitors from 2 ECP patients. In a third ECP patient, polyclonal CD34(+) cells could only be found in the first peripheral blood collection. In contrast to ECP CML, steady-state marrow progenitors in late chronic phase and AP disease were mostly Ph+, BCR/ABL mRNA+, and clonal. Further, in the majority of these patients, a Ph-, polyclonal state could not be restored despite mobilization with intensive chemotherapy. We conclude from these studies that CD34(+)HLA-DR- cells that are Ph- and BCR/ABL mRNA- are polyclonal and therefore benign. This population is suitable for autografting in CML.  相似文献   

18.
We investigated the mechanism of competition between Li+ and Mg2+ in Li(+)-loaded human red blood cells (RBCs) by making 7Li and 31P NMR and fluorescence measurements. We used 7Li NMR relaxation times to probe Li+ binding to the human RBC membrane and ATP; an increase in Mg2+ concentration caused an increase in both 7Li T1 and T2 values in packed Li(+)-loaded RBCs, in suspensions of Li(+)-loaded RBC ghosts, in suspensions of Li(+)-containing RBC membrane, and in aqueous solutions of ATP, indicating competition between Li+ and Mg2+ for binding sites in the membrane and ATP. We found that increasing concentrations of either Li+ or Mg2+ in the presence of human RBC membrane caused an increase in the 31P NMR chemical shift anisotropy parameter, which describes the observed axially symmetric powder pattern, indicating metal ion binding to the phosphate groups in the membrane. Competition between Li+ and Mg2+ for phosphate groups in ATP and in the RBC membrane was also observed by both fluorescence measurements and 31P NMR spectroscopy at low temperature. The ratio of the stoichiometric binding constants of Mg2+ to Li+ to the RBC membrane was approximately 20; the ratio of the conditional binding constants in the presence of a free intracellular ATP concentration of 0.2 mM was approximately 4, indicating that Li+ competes for approximately 20% of the Mg(2+)-binding sites in the RBC membrane. Our results indicate that, regardless of the spectroscopic method used, Li+ competes with Mg2+ for phosphate groups in both ATP and the RBC membrane; the extent of metal ion competition for the phosphate head groups of the phospholipids in the RBC membrane is enhanced by the presence of ATP. Competition between Li+ and Mg2+ for anionic phospholipids or Mg(2+)-activated proteins present in cell membranes may constitute the basis of a general molecular mechanism for Li+ action in human tissues.  相似文献   

19.
One hypothesis to explain the age-dependent clearance of red blood cells (RBCs) from circulation proposes that denatured/oxidized hemoglobin (hemichromes) arising late during an RBC's life span induces clustering of the integral membrane protein, band 3. In turn, band 3 clustering generates an epitope on the senescent cell surface leading to autologous IgG binding and consequent phagocytosis. Because dog RBCs have survival characteristics that closely resemble those of human RBCs (ie, low random RBC loss, approximately 115-day life span), we decided to test several aspects of the above hypothesis in the canine model, where in vivo aged cells of defined age could be evaluated for biochemical changes. For this purpose, dog RBCs were biotinylated in vivo and retrieved for biochemical analysis at various later dates using avidin-coated magnetic beads. Consistent with the above hypothesis, senescent dog RBCs were found to contain measurably elevated membrane-bound (denatured) globin and a sevenfold enhancement of surface-associated autologous IgG. Interestingly, dog RBCs that were allowed to senesce for 115 days in vivo also suffered from compromised intracellular reducing power, containing only 30% of the reduced glutathione found in unfractionated cells. Although the small quantity of cells of age >/=110 days did not allow direct quantitation of band 3 clustering, it was nevertheless possible to exploit single-cell microdeformation methods to evaluate the fraction of band 3 molecules that had lost their normal skeletal linkages and were free to cluster in response to hemichrome binding. Importantly, band 3 in RBCs >/=112 days old was found to be 25% less restrained by skeletal interactions than band 3 in control cells, indicating that the normal linkages between band 3 and the membrane skeleton had been substantially disrupted. Interestingly, the protein 4.1a/protein 4.1b ratio, commonly assumed to reflect RBC age, was found to be maximal in RBCs isolated only 58 days after labeling, implying that while this marker is useful for identifying very young populations of RBCs, it is not a very sensitive marker for canine senescent RBCs. Taken together, these data argue that several of the readily testable elements of the above hypothesis implicating band 3 in human RBC senescence can be validated in an appropriate canine model.  相似文献   

20.
Hematopoiesis is a balance between proliferation and differentiation that may be modulated by environmental signals. Notch receptors and their ligands are highly conserved during evolution and have been shown to regulate cell fate decisions in multiple developmental systems. To assess whether Notch1 signaling may regulate human hematopoiesis to maintain cells in an immature state, we transduced a vesicular stomatitis virus G-protein (VSV-G) pseudo-typed bicistronic murine stem cell virus (MSCV)-based retroviral vector expressing a constitutively active form of Notch1 (ICN) and green fluorescence protein into the differentiation competent HL-60 cell line and primary cord blood-derived CD34(+) cells. In addition, we observed endogenous Notch1 expression on the surface of both HL-60 cells and primary CD34(+) cells, and therefore exposed cells to Notch ligand Jagged2, expressed on NIH3T3 cells. Both ligand-independent and ligand-dependent activation of Notch resulted in delayed acquisition of differentiation markers by HL-60 cells and cord blood CD34(+) cells. In addition, primary CD34(+) cells retained their ability to form immature colonies, colony-forming unit-mix (CFU-mix), whereas control cells lost this capacity. Activation of Notch1 correlated with a decrease in the fraction of HL-60 cells that were in G0/G1 phase before acquisition of a mature cell phenotype. This enhanced progression through G1 was noted despite preservation of the proliferative rate of the cells and the overall length of the cell cycle. These findings show that Notch1 activation delays human hematopoietic differentiation and suggest a link of Notch differentiation effects with altered cell cycle kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号