首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We are engaged in a systematic study of the optical and laser properties of Cr2+-doped cadmium chalcogenides. Previously, we demonstrated quasi-continuous wave lasing from Cr2+-doped Cd0.55Mn0.45Te with slope efficiencies as high as 64% and a laser tuning range from 2,170–3,010 nm. In this paper, we report the first demonstration of lasing from Cr:CdTe at room temperature. Pulsed-laser operation was obtained with a free-running spectrum centered at 2,535 nm. The slope efficiency of the laser was low (∼1%) because of large parasitic losses at the laser wavelength. The spectroscopic properties of Cr:CdTe are favorable for laser applications because of a large emission cross section (∼2.5 × 10−18 cm2) and a high emission-quantum yield (∼88%). In addition, CdTe can easily incorporate Cr ions either through melt growth or diffusion doping. Along with our results on Cr2+:CdTe, we report on the optical properties of several other Cr2+-doped II-VI semiconductors (ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, Cd0.9Zn0.1Te, Cd0.65Mg0.35Te, Cd0.85Mn0.15Te, and Cd0.55Mn0.45Te) and compare them for applications as solid-state laser materials.  相似文献   

2.
We have successfully synthesized highly mismatched Cd1−yMnyOxTe1−x alloys by high-dose implantation of O ions into Cd1−yMnyTe crystals. In crystals with y>0.02, incorporation of O causes a large decrease in the bandgap. The bandgap reduction increases with y; the largest value observed is 190 meV in O+-implanted Cd0.38Mn0.62Te. The results are consistent with the band anticrossing (BAC) model, which predicts that a repulsive interaction between localized states of O located above the conduction-band edge and the extended states of the conduction band causes the bandgap reduction. A best fit of the measured bandgap energies of the O-ion-synthesized Cd1−yMnyOxTe1−x alloys using the BAC model for y<0.55 suggests an activation efficiency of only ∼5% for implanted O in Cd1−yMnyTe.  相似文献   

3.
Relatively new materials for mid-infrared tunable lasing using chromium-doped Cd1-xMnxTe and cobalt-doped Cd1-xMnxTe have been developed. Previously, ZnS and ZnSe were used as host materials for chromium to produce mid-infrared (MIR) lasing. Compared to these materials, large diameter CdMnTe is easier to grow (using the Bridgman technique) and can be made more homogeneous. Moreover, the ternary nature of Cd1-xMnxTe offers the unique opportunity to optimize the optical properties of the material through variation of chemical composition and lattice parameter. Using Cd0.55Mn0.45Te:Cr, we have demonstrated room temperature lasing from 2.1 to 3.0 m, and we have demonstrated quasi-continuous wave (cw) lasing. To our knowledge, the observed tuning range (∼840 nm) of Cr2+:Cd0.55Mn0.45Te is the largest ever reported from a transition metal ion laser. Furthermore, this is the first time that a room temperature quasi-cw laser operating at 3 m has been demonstrated using this type of material. Also, preliminary work on Cd0.55Mn0.45Te:Co indicates its potential for tunable mid-infrared lasing around 3600 nm at cryogenic temperatures. Results from inductively coupled plasma mass spectrometry (ICP-MS), which determine the concentration of dopant that has been incorporated in to the host lattice, will be reported, as will the materials characterization and lasing results. The processing issues for optimizing the laser performance in these material systems will also be discussed.  相似文献   

4.
Hg1−xCdxTe films were grown liquid phase epitaxially from tellurium rich solutions containing up to 10 at. % of the group V elements P, As, Sb, and Bi. Chemical analysis of the Te growth solutions and the films was carried out in conjunction with extensive Hall effect measurements on the films subsequent to various annealing treatments under Hg rich and Te rich conditions. Despite the presence of a large concentration of the group V elements in the Te source solution, the maximum concentration of these elements incorporated into the liquid phase epitaxially grown Hg1-xCdxTe appears to vary from <1015cm−3 for Bi up to 1017cm−3 for phosphorus and As implying a distribution coefficient varying from <10−5 for Bi up to 10−3 for P at growth temperature of ∼500° C. This low value of the distribution coefficient for group V elements for growths from Te rich solutions contrasts with the moderately high values reported in the literature to date for growth from Hg rich solutions as well as pseudobinary solutions (Bridgman growth). The widely differing distribution coefficients and hence the solubility of the group V elements for Hg rich and Te rich liquid phase epitaxial solutions is explained on the basis that the activity coefficient of the group V elements in Te rich solutions is probably orders of magnitude lower than it is in Hg rich solutions. Finally, the results of the anneals at 200° C under Hg saturated conditions with and without a 500° C Hg saturated preanneal have indicatedn top conversion in many of the films attesting to the amphoteric behavior of the group V elements in LPE grown Hg1−xCdxTe(s) similar to the previously reported behavior of P in bulk grown Hg0.8Cd0.2Te.  相似文献   

5.
Cd1−x Mn x Te is a typical diluted magnetic semiconductor, as well as substrate for the epitaxial growth of Hg1−x Cd x Te. In this paper, the homogeneity of a Cd1−x Mn x Te (x = 0.2) single-crystal ingot grown by the vertical Bridgman method was studied. The crystal structure and quality of the as-grown ingot were evaluated. Near-infrared (NIR) transmission spectroscopy was adopted to develop a simple optical determination of the Mn concentration in the as-grown ingot. A correlation equation between cut-off wavelength λ co from NIR transmission spectra and Mn concentration by inductively coupled plasma atomic emission spectrometry (ICP-AES) was established. Using this equation, we investigated the Mn concentration distribution in both the axial and radial directions of the ingot. It was found that the segregation coefficient of Mn in the axial direction of the ingot was 0.95, which is close to unity. The Mn concentration variation in the wafers from the middle part of the ingot was 0.001 mole fraction. All these results proved that homogeneous Cd0.8Mn0.2Te crystals can be grown from the vertical Bridgman method.  相似文献   

6.
The Cr2+ doped CdS0.8Se0.2 crystals were grown by the vertical, self-seeded, physical vapor transport (PVT) technique. Good quality, crack- and inclusion-free single crystals were grown with an average Cr2+ concentration of 5 × 1018 cm−3. Different source-to-tip distances were used to improve the segregation coefficient (Crcrystal/Crsource) of the grown crystals. It was observed that lowering the source-to-tip distance increases the segregation coefficient dramatically. With a 2-cm source-to-tip distance, good quality crystals were grown with uniform Cr2+ concentration throughout the ingot. The segregation coefficient was found to be ∼0.85. The composition of the crystals was also found to be fairly uniform along the length and across the diameter.  相似文献   

7.
Planar melt crystallization is used to grow single crystals of Cd-Mg-Mn-Te quaternary alloys along the pseudobinary sections Cd0.75 − x Mg x Mn0.25Te, Cd0.75 − x Mg0.25Mn x Te, and Cd1 − 2x Mg x Mn x Te. The first photosensitive structures, i.e., In/CdMgMnTe Schottky barriers, are fabricated within each indicated single-crystal section. The spectral dependences of the relative quantum efficiency of photoconversion are measured, and the broadband photosensitivity of the new structures is detected. Based on the spectral dependences of the photosensitivity, the nature of the meson transitions is discussed and the corresponding band gaps are determined. The applicability of grown single crystals of CdMgMnTe quaternary alloys to broadband photoconverters of optical radiations is ascertained.  相似文献   

8.
A series of n-type, indium-doped Hg1−xCdxTe (x∼0.225) layers were grown on Cd0.96Zn0.04Te(311)B substrates by molecular beam epitaxy (MBE). The Cd0.96Zn0.04Te(311)B substrates (2 cm × 3 cm) were prepared in this laboratory by the horizontal Bridgman method using double-zone-refined 6N source materials. The Hg1−xCdxTe(311)B epitaxial films were examined by optical microscopy, defect etching, and Hall measurements. Preliminary results indicate that the n-type Hg1−xCdxTe(311)B and Hg1−xCdxTe(211)B films (x ∼ 0.225) grown by MBE have comparable morphological, structural, and electrical quality, with the best 77 K Hall mobility being 112,000 cm2/V·sec at carrier concentration of 1.9×10+15 cm−3.  相似文献   

9.
The growth of high quality Hg0.8Cd0.2Te bulk single crystals by CVT, combined with an in-situ seeding technique, is reported here for the first time. For this purpose, a temperature difference of 590° → 540° C with a gradient of 40°-50° C/cm at the solid-vapor interface, and about 0.1 atm of HgI2 as a transport agent, were employed. The bulk crystals have the expected stoichiometry and compositional homogeneity. Etch pit densities of 104-105 cm−2 on the (111) face and hitherto unreported etch pits on the (100) face were observed in this work. Possible origins of the sub-grain structure are discussed.  相似文献   

10.
The epitaxial layers of Hg1−xCdxTe (0.17≦×≦0.3) were grown by liquid phase epitaxy on CdTe (111)A substrates using a conventional slider boat in the open tube H2 flow system. The as-grown layers have hole concentrations in the 1017− 1018 cm−3 range and Hall mobilities in the 100−500 cm2/Vs range for the x=0.2 layers. The surfaces of the layers are mirror-like and EMPA data of the layers show sharp compositional transition at the interface between the epitaxial layer and the substrate. The effects of annealing in Hg over-pressure on the properties of the as-grown layers were also investigated in the temperature range of 250−400 °C. By annealing at the temperature of 400 °C, a compositional change near the interface is observed. Contrary to this, without apparent compositional change, well-behaved n-type layers are obtained by annealing in the 250−300 °C temperature range. Sequential growth of double heterostructure, Hgl−xCdxTe/Hgl−yCdyTe on a CdTe (111)A substrate was also demonstrated.  相似文献   

11.
The growth of epitaxial layers of mercury-cadmium-telluride (Hg1-xCdxTe) with relatively low x (0.2-0.3) from Te-rich solutions in an open tube sliding system is studied. The development of a semiclosed slider system with unique features permits the growth of low x material at atmospheric pressure. The quality of the films is improved by the use of Cd1-yZyTe and Hg1-xCdxTe substrates instead of CdTe. The substrate effects and the growth procedure are discussed and a solidus line at a relatively low temperature is reported. The asgrown epitaxial layers are p-type with hole concentration of the order of 1·1017 cm−3, hole mobility of about 300 cm2·V−1 sec−1 and excess minority carrier life-time of 3 nsec, at 77 K.  相似文献   

12.
Mercury radiotracer diffusion results are presented, in the range 254 to 452°C, for bulk and epitaxial CdxHg1–xTe, and we believe this to be the first report for metalorganic vapor phase epitaxy (MOVPE) grown CdxHg1–xTe. For all growth types studied, with compositions of xCd=0.2±0.04, the variation of the lattice diffusion coefficient, DHg, with temperature, under saturated mercury partial pressure, obeyed the equation: DHg=3×10−3 exp(−1.2 eV/kT) cm2 s−1. It was found to have a strong composition dependence but was insensitive to changes of substrate material or crystal orientation. Autoradiography was used to show that mercury also exploited defect structure to diffuse rapidly from the surface. Dislocation diffusion analysis is used to model defect tails in MOVPE CdxHg1–xTe profiles.  相似文献   

13.
Spectrometer-grade CdTe single crystals with resistivities higher than 109 Ω cm have been grown by the modified Bridgman method using zone-refined precursor materials (Cd and Te) under a Cd overpressure. The grown CdTe crystals had good charge-transport properties (μτ e = 2 × 10−3 cm2 V−1, μτ h = 8 × 10−5 cm2 V−1) and significantly reduced Te precipitates compared with crystals grown without Cd overpressure. The crystal growth conditions for the Bridgman system were optimized by computer modeling and simulation, using modified MASTRAPP program, and applied to crystal diameters of 14 mm (0.55′′), 38 mm (1.5′′), and 76 mm (3′′). Details of the CdTe crystal growth operation, structural, electrical, and optical characterization measurements, detector fabrication, and testing using 241Am (60 keV) and 137Cs (662 keV) sources are presented.  相似文献   

14.
Epitaxial layers of Hg1−xCdx Te were grown on CdTe substrates by the chemical vapor transport technique using Hgl2 as a transport agent. The epilayers were of nearly uniform composition both laterally and to a depth of about one-half of the layer thickness. By comparison, the composition varied continuously throughout the depth of the layer for epilayers grown by the physical vapor transport technique. Layers were grown both p- and n-type with carrier concentrations on the order of 1017 cm−3. Low-temperature annealing was used to convert the p-type layers into n-type. The room-temperature carrier mobilities of as-grown and converted n-type layers ranged from 103 to 104 cm2/V-s depending on the composition and are comparable to previous literature values for undoped Hg1−xCdxTe crystals.  相似文献   

15.
A modified mass-loss measurement technique is employed, for the direct,in- situ determination of the metal vacancy formation in (Hg1x2212;itxCd x )1−y Te y (s) withx = 0.2 and 0.4. Forx = 0.2, the metal vacancy concentrations are determined between 336 and 660° C for three different compositions(y) within the homogeneity region and range from 2.4 to6.8 x 1019cm−3. The enthalpy of formation of a singly-ionized metal vacancy is derived to be between 0.17 and 0.45 eV depending upon the deviation from stoichiometry (compositiony). Forx= 0.4, three samples of different y-values give the metal vacancy concentrations from 1.9 to 5.5 x 1019cm−3 between 316 and 649° C, and the enthalpy of vacancy formation between 0.25 and 0.40 eV. Compared to the recent data on HgTe(s), these experimental results show a slight but significant decrease in the enthalpy of vacancy formation from HgTe to Hg0.8Cd0.2Te, which supports theoretical predictions of the bond weakening effect of Cd for the latter alloy system. Based on the simultaneously determined equilibrium Hg partial pressures within the homogeneity range, the vacancy concentration-partial pressure isotherms are constructed. The Hg partial pressures are also measured along the three-phase boundaries of the solid solutions of bothx = 0.2 and 0.4, and these are in close agreement with published data obtained by optical absorption measurements.  相似文献   

16.
A study on preparation of Cd0.96Zn0.04Te(211)B substrates for growth of Hg1−xCdxTe epitaxial layers by molecular beam epitaxy (MBE) was investigated. The objective was to investigate the impact of starting substrate surface quality on surface defects such as voids and hillocks commonly observed on MBE Hg1−xCdxTe layers. The results of this study indicate that, when the Cd0.96Zn0.04Te(211)B substrates are properly prepared, surface defects on the resulting MBE Hg1−xCdxTe films are reduced to minimum (size, ∼0.1 m and density ∼500/cm2) so that these MBE Hg1−xCdx Te films have surface quality as good as that of liquid phase epitaxial (LPE) Hg1−xCdxTe films currently in production in this laboratory.  相似文献   

17.
CdMnTe offers several potential advantages over CdZnTe as a room- temperature gamma-ray detector, but many drawbacks in its growth process impede the production of large, defect-free single crystals with high electrical resistivity and high electron lifetimes. Here, we report our findings of the defects in several vanadium-doped as-grown as well as annealed Cd1−x Mn x Te crystals, using etch pit techniques. We carefully selected single crystals from the raw wafer to fabricate and test as a gamma-ray detector. We describe the quality of the processed Cd1−x Mn x Te surfaces, and compare them with similarly treated CdZnTe crystals. We discuss the characterization experiments aimed at clarifying the electrical properties of fabricated detectors, and evaluate their performance as gamma-ray spectrometers.  相似文献   

18.
The requirement for two color Sprite detectors, with elements sensitive in the ranges 3-5 μn (MW) and 8-14 μn (LW) at 77K, is met using Hg1−xCdxTe elements of composition x = 0.3 and x = 0.2, respectively. The need for low defect levels for increased performance indicates the use of liquid phase epitaxy (LPE). While LW material is fairly well characterized, the growth and conversion to n-type of MW LPE has proved more difficult. Reported work shows limited data and limited success in converting MW LPE to n-type, and this primarily in donor-doped material. This paper describes the growth, annealing to n-type and characterization of Hg0.7Cd0.3Te. High n-type conversion yields were obtained, with low donor levels (mid-1013 to mid-1014 cm−3), high mobility (>104 cm2 (Vs)−1) and long minority carrier lifetime (>10 us).  相似文献   

19.
Three indicators (T1000, T5000, and T1000/T5000) are used to appraise the infrared (IR) transmission spectra for Cd1−xZnxTe (CZT) slices. By comparing the values of these three indicators, four typical types of IR spectra are characterized for CZT crystals. The CZT crystals possessing the four types of IR spectra are different in microstructures, especially the densities and sizes of Te precipitates, the free carrier concentrations, and the resistivities. Mechanisms for the elimination of tiny and dense Te precipitates are given by analyzing the variation of the IR transmittance in the range of 500–5000 cm−1 during the annealing process.  相似文献   

20.
O. A. Fedyaeva 《Semiconductors》2014,48(11):1444-1448
A comparative analysis of the Raman spectra of CdTe and Cd0.2Hg0.8Te crystals stored in air, ammonia NH3, and carbon dioxide CO2 is performed. It is established that the chemical adsorption of gases causes deformation of the surface of the semiconductors, the signal shape of recombination luminescence varies and hidden vibrational modes of acoustic and optical phonons appear. The variation in the spectrum of lattice vibrations confirms the occurrence of the inverse absorption piezoelectric effect in A X B8 ? X materials, particularly CdTe and Cd0.2Hg0.8Te.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号