首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Deamination of cytosine residues contributes to the appearance of uracil in DNA. Uracil DNA glycosylase (UDG) initiates uracil excision repair to safeguard the genomic integrity. To study the mechanism of uracil excision in mycobacteria (organisms with G+C rich genomes), we have purified UDG from Mycobacterium smegmatis by more than 3000-fold. The molecular mass of M. smegmatis UDG, as determined by SDS/PAGE, is approximately 25 kDa and it shows maximum activity at pH 8.0. The N-terminal sequence analysis shows that the initiating amino acid, formyl-methionine is cleaved from the mature protein. More interestingly, unlike Escherichia coli UDG, which forms a physiologically irreversible complex with the inhibitor protein Ugi, M. smegmatis UDG forms a dissociable complex with it. M. smegmatis UDG excises uracil from the 5'-terminal position of the 5'-phosphorylated substrates. However, its excision from the 3'-penultimate position is extremely poor. Similar to E. coli UDG, M. smegmatis UDG also uses pd(UN)p as its minimal substrate. However, in contrast to E. coli UDG, which excises uracil from different loop positions of tetraloop hairpin substrates with highly variable efficiencies, M. smegmatis UDG excises the same uracil residues with comparable efficiencies. Kinetic parameters (Km and Vmax) for uracil release from synthetic substrates suggest that M. smegmatis UDG is an efficient enzyme and better suited for molecular biology applications. We discuss the usefulness of the distinct biochemical properties of M. smegmatis UDG in the possible design of selective inhibitors against it.  相似文献   

2.
MutY protein, a DNA glycosylase found in Escherichia coli, recognizes dA:dG, dA:8-oxodG, and dA:dC mismatches in duplex DNA, excising the adenine moiety. We have investigated the mechanism of action of MutY, addressing several points of disagreement raised by previous studies of this enzyme. MutY forms a covalent intermediate with its DNA substrate but does not catalyze strand cleavage. The covalent intermediate has a half-life of approximately 2.6 h, 2 orders of magnitude greater than the half-life of Schiff bases formed when E. coli formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III react with their respective substrates. The covalent complex between MutY and its DNA substrate involves Lys-142; however, the position of this residue in the presumptive active site differs from that of catalytic residues involved in Schiff base formation associated with endonuclease III and related DNA glycosylases/AP lyases. MutY converts DNA duplexes containing the dA:8-oxodG mispair to a product containing an abasic site; heat-induced cleavage of this product may account for the several reports in the literature that ascribe AP lyase activity to MutY. The MutY-DNA intermediate complex is highly stable and hinders access by Fpg to DNA, thereby avoiding a double-strand break. Cross-linking of MutY to DNA may play an important role in the regulation of base excision repair.  相似文献   

3.
The Escherichia coli Fpg protein is involved in the repair of oxidized residues. We examined, by targeted mutagenesis, the effect of the conserved lysine residue at position 57 upon the various catalytic activities of the Fpg protein. Mutant Fpg protein with Lys-57-->Gly (K57G) had dramatically reduced DNA glycosylase activity for the excision of 7,8-dihydro-8-oxo-guanine (8-oxoG). While wild type Fpg protein cleaved 8-oxoG/C DNA with a specificity constant ( k cat/ K M) of 0.11/(nM@min), K57G cleaved the same DNA 55-fold less efficiently. FpgK57G was poorly effective in the formation of Schiff base complex with 8-oxoG/C DNA. The efficiency in the binding of 8-oxoG/C DNA duplex for K57G mutant was decreased 16-fold. The substitution of Lys-57 for another basic amino acid Arg (K57R) had a slight effect on the 8-oxoG-DNA glycosylase activity and Schiff base formation. The DNA glycosylase activities of FpgK57G and FpgK57R using 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine residues as substrate were comparable to that of wild type Fpg. In vivo, the mutant K57G, in contrast to the mutant K57R and wild type Fpg, only partially restored the ability to prevent spontaneously induced transitions G/C-->T/A in E.coli BH990 ( fpg mutY ) cells. These results suggest an important role for Lys-57 in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo.  相似文献   

4.
An open reading frame, BamHI D6R, from the central highly conserved region of the Shope fibroma virus (SFV) genome was sequenced and found to have significant homology to that of uracil DNA glycosylases from a number of organisms. Uracil DNA glycosylase catalyzes the initial step in the repair pathway that removes potentially mutagenic uracil from duplex DNA. The D6R polypeptide was expressed in reticulocyte lysates programmed with RNA transcribed from an expression vector containing the T7 RNA polymerase promoter. A highly specific ethidium bromide fluorescence assay of the in vitro translation product determined that the encoded protein does indeed possess uracil DNA glycosylase activity. Open reading frames from other poxviruses, including vaccinia virus (HindIII D4R) and fowlpox (D4), are highly homologous to D6R of SFV and are predicted to encode uracil DNA glycosylases. Identification of the SFV uracil DNA glycosylase provides evidence that this poxviral protein is involved in the repair of the viral DNA genome. Since this enzyme performs only the initial step required for the removal of uracil from DNA, creating an apyrimidinic site, we suggest that other, possibly virus-encoded, repair activities must be present in the cytoplasm of infected cells to complete the uracil excision repair pathway.  相似文献   

5.
A novel process is presented for the detection of known mutations and polymorphisms in DNA. This process, termed glycosylase mediated polymorphism detection (GMPD) involves amplification of the target DNA using three normal dNTPs and a fourth modified dNTP, whose base is a substrate for a specific DNA-glycosylase once incorporated into the DNA. The work described here utilises uracil DNA-glycosylase as the specific glycosylase and dUTP as the modified dNTP. Primers are designed so that during extension, the position of the first uracil incorporated into the extended primers differs depending on whether a mutation is present or absent. Subsequent glycosylase excision of the uracil residues followed by cleavage of the apyrimidinic sites allows detection of the mutation in the amplified fragment as a fragment length polymorphism. Variation in the sizes of the fragment length polymorphisms generated, can be readily achieved through the use of inosine bases in place of adenine bases in the upper and/or lower primers. The GMPD process is also adaptable to solid phase analysis. The use of the process for detection of mutations in the RYR1 and CFTR genes is demonstrated. Overall, the simplicity, specificity, versatility and flexibility of the GMPD process make it an attractive candidate for both small and large scale application in mutation detection and genome analysis.  相似文献   

6.
The mutY homolog (SpMYH) gene from a cDNA library of Schizosaccharomyces pombe encodes a protein of 461 amino acids that displays 28 and 31% identity to Escherichia coli MutY and human MutY homolog (MYH), respectively. Expressed SpMYH is able to complement an E. coli mutY mutant to reduce the mutation rate. Similar to E. coli MutY protein, purified recombinant SpMYH expressed in E. coli has adenine DNA glycosylase and apurinic/apyrimidinic lyase activities on A/G- and A/7,8-dihydro-8-oxoguanine (8-oxoG)-containing DNA. However, both enzymes have different salt requirements and slightly different substrate specificities. SpMYH has greater glycosylase activity on 2-aminopurine/G and A/2-aminopurine but weaker activity on A/C than E. coli MutY. Both enzymes also have different substrate binding affinity and catalytic parameters. Although SpMYH has great affinity to A/8-oxoG-containing DNA as MutY, the binding affinity to A/G-containing DNA is substantially lower for SpMYH than MutY. SpMYH has similar reactivity to both A/G- and A/8-oxoG-containing DNA; however, MutY cleaves A/G-containing DNA about 3-fold more efficiently than it does A/8-oxoG-containing DNA. Thus, SpMYH is the functional eukaryotic MutY homolog responsible for reduction of 8-oxoG mutational effect.  相似文献   

7.
An ionizing radiation-induced DNA lesion, thymine glycol, is removed from DNA by a thymine glycol DNA glycosylase with an apurinic/apyrimidinic (AP) lyase activity encoded by the Escherichia coli endonuclease III ( nth ) gene and its homolog in humans. Cells from Cockayne syndrome patients with mutations in the XPG gene show approximately 2-fold reduced global repair of thymine glycol. Hence, I decided to investigate the molecular mechanism of the effect of XPG protein observed in vivo on thymine glycol removal by studying the interactions of XPG protein and human endonuclease III (HsNTH) protein in vitro and the effect of XPG protein on the activity of HsNTH protein on a substrate containing thymine glycol. The XPG protein stimulates the binding of HsNTH protein to its substrate and increases its glycosylase/AP lyase activity by a factor of approximately 2 through direct interaction between the two proteins. These results provide in vitro evidence for a second function of XPG protein in DNA repair and a mechanistic basis for its stimulatory activity on HsNTH protein.  相似文献   

8.
Uracil can arise in DNA by misincorporation of dUTP into nascent DNA and/or by cytosine deamination in established DNA. Based on recent findings, both pathways appear to be promoted in the methyl-deficient model of hepatocarcinogenesis. A chronic increase in the ratio dUTP:dTTP with folate/methyl deficiency can result in a futile cycle of excision and reiterative uracil misincorporation leading to premutagenic apyrimidinic (AP) sites, DNA strand breaks, DNA fragmentation and apoptotic cell death. The progressive accumulation of unmethylated cytosines with chronic methyl deficiency will increase the potential for cytosine deamination to uracil and further stress uracil mismatch repair mechanisms. Uracil is removed by a highly specific uracil-DNA glycosylase (UDG) leaving an AP site that is subsequently repaired by sequential action of AP endonuclease, 5'-phosphodiesterase, a DNA polymerase and DNA ligase. Since the DNA polymerases cannot distinguish between dUTP and dTTP, an increase in dUTP:dTTP ratio will promote uracil misincorporation during both DNA replication and repair synthesis. The misincorporation of uracil for thymine (5-methyluracil) may constitute a genetically significant form of DNA hypomethylation distinct from cytosine hypomethylation. In the present study a significant increase in the level of uracil in liver DNA as early as 3 weeks after initiation of folate/methyl deficiency was accompanied by parallel increases in DNA strand breaks, AP sites and increased levels of AP endonuclease mRNA. In addition, uracil was also detected within the p53 gene sequence using UDG PCR techniques. Increased levels of uracil in DNA implies that the capacity for uracil base excision repair is exceeded with chronic folate/methyl deficiency. It is possible that enzyme-induced extrahelical bases, AP sites and DNA strand breaks interact to negatively affect the stability of the DNA helix and stress the structural limits of permissible uracil base excision repair activity. Thus substitution of uracil for thymine induces repair-related premutagenic lesions and a novel form of DNA hypomethylation that may relate to tumor promotion in the methyl-deficient model of hepatocarcinogenesis.  相似文献   

9.
In the base excision DNA repair pathway, DNA glycosylases recognize damaged bases in DNA and catalyze their excision through hydrolysis of the N-glycosidic bond. Attempts to understand the structural basis for DNA damage recognition by DNA glycosylases have been hampered by the short-lived association of these enzymes with their DNA substrates. To overcome this problem, we have employed an approach involving the design and synthesis of inhibitors that form stable complexes with DNA glycosylases, which can then be studied biochemically and structurally. We have previously reported that double-stranded DNA containing a pyrrolidine abasic site analog (PYR) forms an extremely stable complex with the DNA glycosylase AlkA and potently inhibits the reaction catalyzed by the enzyme (Sch?rer, O. D., Ortholand, J.-Y., Ganesan, A., Ezaz-Nikpay, K., and Verdine, G. L. (1995) J. Am. Chem. Soc. 117, 6623-6624). Here we investigate the interaction of this inhibitor with a variety of additional DNA glycosylases. With the exception of uracil DNA glycosylase all the glycosylases tested bind specifically to PYR-containing oligonucleotides. By comparing the interaction of DNA glycosylases with PYR and the structurally related tetrahydrofuran abasic site analog, we assess the importance of the positively charged ammonium group of the pyrrolidine in binding to the active site of these enzymes. Such a general inhibitor of DNA glycosyases provides a valuable tool to study stable complexes of these enzymes bound to substrate-like molecules.  相似文献   

10.
An endonuclease (AP-endonuclease II) that specifically attacks double stranded or single stranded depurinated DNA, resulting in single-strand nicks, has been purified 320-fold from Micrococcus luteus. The enzyme is not stimulated by 0.002 M MgCl2, it induces 3'OH-5'PO4 breaks on the 5' side of apurinic sites, it has no activity towards UV-irradiated DNA and has a molecular weight of about 30 000. In cooperation with DNA-polymerase from M. luteus and T4 DNA ligase, AP-endonuclease II has been shown capable of carrying out complete excision repair of depurinated DNA in vitro.  相似文献   

11.
Repair of the exocyclic DNA adduct propanodeoxyguanosine (PdG) was assessed in both in vivo and in vitro assays. PdG was site-specifically incorporated at position 6256 of M13MB102 DNA, and the adducted viral genome was electroporated into repair-proficient and repair-deficient Escherichia coli strains. Comparable frequencies of PdG --> T and PdG --> A mutations at position 6256 were detected following replication of the adducted genomes in wild-type E. coli strains. A 4-fold increase in the frequencies of transversions and transitions was observed in E. coli strains deficient in Uvr(A)BC-dependent nucleotide excision repair. A similar increase in the replication of the adduct containing strand was observed in the repair-deficient strains. No change in the frequency of targeted mutations was observed in strains deficient in one or both of the genes coding for 3-methyladenine glycosylase. Incubation of purified E. coli Uvr(A)BC proteins with a duplex 156-mer containing a single PdG adduct resulted in removal of a 12-base oligonucleotide containing the adduct. Incubation of the same adducted duplex with Chinese hamster ovary cell-free extracts also resulted in removal of the adduct. PdG was a better substrate for repair by the mammalian nucleotide excision repair complex than the bacterial repair complex and was approximately equal to a thymine-thymine dimer as a substrate for the former. The results of these in vivo and in vitro experiments indicate that PdG, a homolog of several endogenously produced DNA adducts, is repaired by the nucleotide excision repair pathway.  相似文献   

12.
Escherichia coli DNA polymerase III holoenzyme contains 10 different subunits which assort into three functional components: a core catalytic unit containing DNA polymerase activity, the beta sliding clamp that encircles DNA for processive replication, and a multisubunit clamp loader apparatus called gamma complex that uses ATP to assemble the beta clamp onto DNA. We examine here the function of the psi subunit of the gamma complex clamp loader. Omission of psi from the holoenzyme prevents contact with single-stranded DNA-binding protein (SSB) and lowers the efficiency of clamp loading and chain elongation under conditions of elevated salt. We also show that the product of a classic point mutant of SSB, SSB-113, lacks strong affinity for psi and is defective in promoting clamp loading and processive replication at elevated ionic strength. SSB-113 carries a single amino acid replacement at the penultimate residue of the C-terminus, indicating the C-terminus as a site of interaction with psi. Indeed, a peptide of the 15 C-terminal residues of SSB is sufficient to bind to psi. These results establish a role for the psi subunit in contacting SSB, thus enhancing the clamp loading and processivity of synthesis of the holoenzyme, presumably by helping to localize the holoenzyme to sites of SSB-coated ssDNA.  相似文献   

13.
We have previously shown that in developing chicken embryos and differentiating mouse myoblasts, the demethylation of 5-metCpGs occurs through the replacement of 5-methylcytosine by cytosine (Jost, J. P. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 4685-4688; Jost, J. P. & Jost, Y.C. (1994) J. Biol. Chem. 269, 10040-10043). We have now purified over 30,000-fold a 5-methylcytosine-DNA glycosylase from 12-day-old chicken embryos. The enzyme copurifies with a mismatch-specific thymine-DNA glycosylase and an apyrimidic-endonuclease. The reaction product of the highly purified 5-methylcytosine-DNA glycosylase is 5-methylcytosine. The copurified apyrimidic-endonuclease activity cleaves 3' from the apyrimidic sugar. A 52.5-kDa peptide, isolated as a single band from preparative SDS-polyacrylamide gels, has both the 5-methylcytosine-DNA glycosylase and the mismatch-specific thymine-DNA glycosylase activities. 5-Methylcytosine-DNA glycosylase has an apparent pI of 5.5-7.5 and maximal activity between pH 6.5 and 7.5. The Km for hemimethylated oligonucleotide substrate is 8 x 10(-8) M with a Vmax of 4 x 10(-11) mol/h/micrograms proteins. 5-Methylcytosine-DNA glycosylase binds equally well to methylated and non-methylated DNA. The enzyme reacts six times faster with the hemimethylated DNA than with the same bifilarly methylated DNA sequence, and single-stranded methylated DNA is not a substrate. The action of the enzyme is distributive.  相似文献   

14.
We analyzed the role played by the conserved Gly154, a constituent of the P1 substrate-binding pocket of Bacillus subtilis subtilisin E, in the catalytic properties of the protease. Using an Escherichia coli expression system, the termination codon at position 154 in subtilisin E was first introduced to abolish the catalytic activity through truncation of the C-terminus from amino acid residues 154-275. We then attempted to obtain revertants with substitutions of various amino acids at position 154 by the polymerase chain reaction using a mixture of oligonucleotides. In addition to the Gly residue (wild-type), six amino acid substitutions (Ala, Arg, Leu, Phe, Pro and Thr) gave caseinolytic activity. When assayed with synthetic peptide substrates, most of the revertants showed a considerable decrease in specific activity and a P1 specificity similar to that of the wild-type enzyme. An Ala154 mutant purified from the periplasmic space in E. coli, however, resulted in an up to 2.3-fold preference for Val rather than Pro as a P2 substrate relative to the wild-type. Further, a significant 2-10-fold increase in the catalytic efficiency occurred in the Gly127Ala plus Gly154Ala combination variant, relative to the single Gly127Ala variant, without any change in the restricted specificity. The kinetic data and molecular modeling analysis demonstrate the important role of position 154 in the catalytic efficiency as well as in the substrate specificity of subtilisin E.  相似文献   

15.
Uracil-DNA glycosylase releases free uracil from DNA and initiates base excision repair for removal of this potentially mutagenic DNA lesion. Using the yeast two-hybrid system, human uracil-DNA glycosylase encoded by the UNG gene (UNG) was found to interact with the C-terminal part of the 34-kDa subunit of replication protein A (RPA2). No interaction with RPA4 (a homolog of RPA2), RPA1, or RPA3 was observed. A sandwich enzyme-linked immunosorbent assay with trimeric RPA and the two-hybrid system both demonstrated that the interaction depends on a region in UNG localized between amino acids 28 and 79 in the open reading frame. In this part of UNG a 23-amino acid sequence has a significant homology to the RPA2-binding region of XPA, a protein involved in damage recognition in nucleotide excision repair. Trimeric RPA did not enhance the activity of UNG in vitro on single- or double-stranded DNA. A part of the N-terminal region of UNG corresponding in size to the complete presequence was efficiently removed by proteinase K, leaving the proteinase K-resistant compact catalytic domain intact and fully active. These results indicate that the N-terminal part constitutes a separate structural domain required for RPA binding and suggest a possible function for RPA in base excision repair.  相似文献   

16.
To gain insight into the relative catalytic efficiencies of mammalian type I and type II DNA topoisomerases, in the cellular context, we have used naked DNA and DNA incorporated into nucleosomes as substrates. We observed that the relaxation activity of both the enzymes declined with DNA containing increasing densities of nucleosomes; however, kinetic analysis revealed that topoisomerase I seemed less affected than topoisomerase II. The addition of histone H1, in stoichiometric amounts, to naked DNA or minichromosomes lessened the activity of topoisomerase II, and required 7-fold less for complete inhibition when the latter was used as the substrate. To ascertain if the observed differences are specific to topoisomerase II from testis, we examined the effect of nucleosomes on the catalytic efficiency of its isoform from liver. Interestingly, the suppression of relaxation activity of liver topoisomerase II required substrates containing higher mass ratios of histone octamer/DNA. Studies on the effect of nucleosomes on the action of teniposide displayed significant differences in the kinetics of the reaction, in its IC50 values, and have provided biochemical evidence for the first time that nucleosomes increased inhibition caused by teniposide. Further, this feature appears to be specific for topoisomerase II-directed drugs and is not shared by the generic class of either DNA-intercalating or non-DNA-intercalating ligands.  相似文献   

17.
Escherichia coli possesses two DNA glycosylase/apurinic lyase activities with overlapping substrate specificities, endonuclease III and endonuclease VIII, that recognize and remove oxidized pyrimidines from DNA. Endonuclease III is encoded by the nth gene. Endonuclease VIII has now been purified to apparent homogeneity, and the gene, nei, has been cloned by using reverse genetics. The gene nei is located at 16 min on the E. coli chromosome and encodes a 263-amino-acid protein which shows significant homology in the N-terminal and C-terminal regions to five bacterial Fpg proteins. A nei partial deletion replacement mutant was constructed, and deletion of nei was confirmed by genomic PCR, activity analysis, and Western blot analysis. nth nei double mutants were hypersensitive to ionizing radiation and hydrogen peroxide but not as sensitive as mutants devoid of base excision repair (xth nfo). Single nth mutants exhibited wild-type sensitivity to X rays, while nei mutants were consistently slightly more sensitive than the wild type. Double mutants lacking both endonucleases III and VIII exhibited a strong spontaneous mutator phenotype (about 20-fold) as determined by a rifampin forward mutation assay. In contrast to nth mutants, which showed a weak mutator phenotype, nei single mutants behaved as the wild type.  相似文献   

18.
We have investigated the substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae (yOgg1 protein) for excision of modified DNA bases from oxidatively damaged DNA substrates using gas chromatography/isotope dilution mass spectrometry. Four DNA substrates prepared by treatment with H2O2/Fe(III)-EDTA/ascorbic acid, H2O2/Cu(II) and gamma-irradiation under N2O or air were used. The results showed that 8-hydroxyguanine (8-OH-Gua) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) were efficiently excised from DNA exposed to ionizing radiation in the presence of N2O or air. On the other hand, 8-OH-Gua and FapyGua were not excised from H2O2/Fe(III)-EDTA/ascorbic acid-treated and H2O2/Cu(II)-treated DNA respectively. Fourteen other lesions, including the adenine lesions 8-hydroxyadenine and 4,6-diamino-5-formamidopyrimidine, were not excised from any of the DNA substrates. Kinetics of excision significantly depended on the nature of the damaged DNA substrates. The findings suggest that, in addition to 8-OH-Gua, FapyGua may also be a primary substrate of yOgg1 in cells. The results also show significant differences between the substrate specificities of yOgg1 protein and its functional analog Fpg protein in Escherichia coli.  相似文献   

19.
DNA (cytosine-5-)-methyltransferase is essential for viable mammalian development and has a central function in the determination and maintenance of epigenetic methylation patterns. Steady-state and substrate trapping studies were performed to better understand how the enzyme functions. The catalytic efficiency was dependent on substrate DNA length. A 14-fold increase in KmDNA was observed as the length decreased from 5000 to 100 base pairs and kcat decreased by a third. Steady-state analyses were used to identify the order of substrate addition onto the enzyme and the order of product release. Double-reciprocal patterns of velocity versus substrate concentration intersected far from the origin and were nearly parallel. The kinetic mechanism does not appear to change when the DNA substrate is either 6250 or 100 base pairs in length. Isotope trapping studies showed that the initial enzyme-AdoMet complex was not catalytically competent; however, the initial enzyme-poly(dI.dC-dI.dC) complex was observed to be competent for catalysis. Product inhibition studies also support a sequential ordered bi-bi kinetic mechanism in which DNA binds to the enzyme first, followed by S-adenosyl-L-methionine, and then the products S-adenosyl-L-homocysteine and methylated DNA are released. The proposed mechanism is similar to the mechanism proposed for M. HhaI, a bacterial DNA (cytosine-5-)-methyltransferase. Evidence for an enzyme-DNA-DNA ternary complex is also presented.  相似文献   

20.
The substrate specificity of aspartate aminotransferase was successfully modified by directed molecular evolution using a combination of DNA shuffling and selection in an auxotrophic Escherichia coli strain. After five rounds of selection, one of the evolved mutants showed a 10(5)-fold increase in the catalytic efficiency (kcat/Km) for beta-branched amino and 2-oxo acids and a 30-fold decrease in that for the native substrates compared with the wild-type enzyme. The mutant had 13 amino acid substitutions, 6 of which contributed 80-90% to the total effect. Five of these six substitutions were conserved among the five mutants that showed the highest activity for beta-branched substrates. Interestingly, only one of the six functionally important residues is located within a distance of direct interaction with the substrate, supporting the idea that rational design of the substrate specificity of an enzyme is very difficult. The present results show that directed molecular evolution is a powerful technique for enzyme redesign if an adequate selection system is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号