首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper presents a state-of-the-art RF microelectromechanical systems (MEMS) wide-band tunable filter designed for the 12–18-GHz frequency range. The coplanar-waveguide filter, fabricated on a glass substrate using loaded resonators with RF MEMS capacitive switches, results in a tuning range of 40% with very fine resolution, and return loss better than 10 dB for the whole tuning range. The relative bandwidth of the filter is$hbox5.7pm hbox0.4hbox%$over the tuning range and the size of the filter is 8 mm$, times ,4$mm. The insertion loss is 5.5 and 8.2 dB at 17.8 and 12.2 GHz, respectively, for a 2-$hboxkOmega/hboxsq$bias line. The loss improves to 4.5 and 6.8 dB at 17.8 and 12.2 GHz, respectively, if the bias line resistance is increased to 20$hboxkOmega/hboxsq$. The measured$ IIP_3$level is$≫$37 dBm for$Delta f ≫ 200$kHz. To our knowledge, this is the widest band planar tunable filter to date.  相似文献   

2.
A low-loss single-pole six-throw switch based on compact RF MEMS switches   总被引:2,自引:0,他引:2  
A low-loss single-pole six-throw (SP6T) switch using very compact metal-contact RF microelectromechanical system (MEMS) series switches is presented. The metal-contact MEMS switch has an extremely compact active area of 0.4 mm /spl times/ 0.3 mm, thus permitting the formation of an SP6T MEMS switch into the RF switch with a total area of 1 mm/sup 2/. The MEMS switch shows an effective spring constant of 746 N/m and an actuation time of 8.0 /spl mu/s. It has an isolation loss from -64.4 to -30.6dB and an insertion loss of 0.08-0.19 dB at 0.5-20 GHz. Furthermore, in order to evaluate RF performances of the SP6T MEMS switch, as well as those of the single-pole single-throw RF MEMS series switch, we have performed small-signal modeling based on a parameter-extraction method. Accurate agreement between the measured and modeled RF performances demonstrates the validity of the small-signal model. The SP6T switch performed well with an isolation loss from -62.4 to -39.1dB and an insertion loss of 0.19-0.70 dB from dc to 6 GHz between the input port and each output port.  相似文献   

3.
This paper presents a miniature high- $Q$ tunable evanescent-mode cavity filter using planar capacitive RF microelectromechanical system (MEMS) switch networks and with a frequency coverage of 4.07–5.58 GHz. The two-pole filter, with an internal volume of 1.5 cm$^3$ , results in an insertion loss of 4.91–3.18- and a 1-dB bandwidth of 17.8–41.1 MHz, respectively, and an ultimate rejection of $>$ 80 dB. RF-MEMS switches with digital/analog tuning capabilities were used in the tunable networks so as to align the two poles together and result in a near-ideal frequency response. The measured $Q_{u}$ of the filter is 300–500 over the tuning range, which is the best reported $Q$ using RF-MEMS technology. The filter can withstand an acceleration of 55–110 g without affecting its frequency response. The topology can be extended to a multiple-pole design with the use of several RF-MEMS tuning networks inside the evanescent-mode cavity. To our knowledge, these results represent the state-of-the-art in RF-MEMS tunable filters.   相似文献   

4.
RFMEMS开关是用MEMS技术形成的新型电路元件,与传统的半导体开关器件相比具有插入损耗低、隔离度大等优点,将对现有雷达和通信中RF结构产生重大影响。文章介绍了RFMEMS开关的基本工艺流程设计,工艺制作技术的研究。实验解决了种子层技术、聚酰亚胺牺牲层技术、微电镀技术的工艺难题,制作出了RFMEMS开关样品,基本掌握了RFMEMS器件的制作工艺技术。RFMEMS开关样品测试的技术指标为:膜桥高度2μm~3μm、驱动电压<30V、频率范围0~40GHz、插入损耗≤1dB、隔离度≥20dB,样品参数性能达到了设计要求。  相似文献   

5.
This paper presents an RF receiver front-end for MB-OFDM-based ultra-wideband (UWB) systems. The receiver occupies only 0.35 mm2 in a 0.18 mum CMOS process and consists of a low-noise amplifier, downconverter and a bandpass filter. There are no on-chip inductors and the receiver requires no off-chip matching components. The measured receiver gain is 21 dB, noise figure is less than 6.6 dB, input IIP3 is -5.6 dBm, and the receiver consumes 19.5 mA from a 2.3 V supply. The receiver covers all the MB-OFDM bands from 3.1 to 8 GHz  相似文献   

6.
A 10 GHz dual-conversion low-IF downconverter using 0.18-mum CMOS technology is demonstrated. The high-frequency quadrature RF and LO1 signals are generated by broadside-coupled quadrature couplers while a two-section polyphase filter is utilised for the low-frequency LO2 quadrature signal generation. As a result, the demonstrated downconverter achieves a conversion gain of 7 dB, IP1 dB of -16 dBm, IIP3 of -5 dBm and noise figure of 26 dB at a 1.8 V supply. The image-rejection ratio of the first/second image signal is 33/42 dB for IF frequency ranging from 10 to 60 MHz, respectively.  相似文献   

7.
The performance is reported for a new microelectromechanical structure (MEMS) cantilever microswitch. We report on both dc- and capacitively-contacted microswitches. The dc-contacted microswitches have contact resistance of less than 1 Ω, and the RF loss of the switch up to 40 GHz in the closed position is 0.1-0.2 dB. Capacitively-contacted switches have an impedance ratio of 141:1 from the open to closed state and in the closed position have a series capacitance of 1.2 pF. The capacitively-contacted switches have been measured up to 40 GHz with S22 less than -0.7 dB across the 5-40 GHz band  相似文献   

8.
This paper presents a 100-kHz fifth-order Chebychev low-pass filter (LPF) using the proposed dynamic biasing (DB) technique which enables wide dynamic range under a low-supply voltage. The change of state variables in the internal nodes of the filter can be corrected by using a novel simplified scheme, avoiding the output transient owing to dynamic biasing. The filter, including an automatic frequency tuning system based on the voltage-controlled-filter (VCF) architecture and voltage reference circuit, is fabricated in a 0.18-mum standard CMOS technology with a 0.5-V threshold voltage and consumes 443 muW from a power supply of 0.6 V. The output noise and the in-band IIP3 are 575 pArms and 219 muA, respectively. The filter achieves a dynamic range of 89 dB.  相似文献   

9.
W-band CPW RF MEMS circuits on quartz substrates   总被引:3,自引:0,他引:3  
This paper presents W-band coplanar waveguide RF microelectromechanical system (MEMS) capacitive shunt switches with very low insertion loss (-0.2 to -0.5 dB) and high-isolation (/spl les/ -30 dB) over the entire W-band frequency range. It is shown that full-wave electromagnetic modeling using Sonnet can predict the performance of RF MEMS switches up to 120 GHz. Also presented are W-band 0/spl deg//90/spl deg/ and 0/spl deg//180/spl deg/ switched-line phase shifters with very good insertion loss (1.75 dB/bit at 90 GHz) and a wide bandwidth of operation (75-100 GHz). These circuits are the first demonstration of RF MEMS digital-type phase shifters at W-band frequencies and they outperform their solid-state counterparts by a large margin.  相似文献   

10.
For pt.1 see ibid., vol.48, no.6, p.1045-1052 (2000). In this paper, the second of two parts, the equivalent RLC model of the shunt switch is used in the design of tuned two- and four-bridge “cross” switches from 10 to 40 GHz. The cross switch attained an insertion loss of less than 0.3-0.6 dB, a return loss below -20 dB from 22 to 38 GHz in the up state, and a down-state isolation of 45-50 dB with only 1.5 pF of down-state capacitance (Cd). Also, an X-band microelectromechanical system (MEMS) switch with an insertion loss of less than 0.2 dB and an isolation of 35 dB is presented. This is done by inductively tuning the LC series resonance of the shunt switch. The MEMS bridge height is 1.5-2.5 μm, resulting in a pull-down voltage of 15-25 V. Application areas are in low-loss high-isolation communication and radar  相似文献   

11.
The integration of microelectromechanical systems (MEMS) switch and control integrated circuit (IC) in a single package was developed for use in next-generation portable wireless systems. This packaged radio-frequency (RF) MEMS switch exhibits an insertion loss under -0.4 dB, and isolation greater than -45 dB. This MEMS switch technology has significantly better RF characteristics than conventional PIN diodes or field effect transistor (FET) switches and consumes less power. The RF MEMS switch chip has been integrated with a high voltage charge pump plus control logic chips into a single package to accommodate the low voltage requirements in portable wireless applications. This paper discusses the package assembly process and critical parameters for integration of MEMS devices and bi-complementary metal oxide semiconductor (CMOS) control integrated circuit (IC) into a single package.  相似文献   

12.
In this paper, a silicon-on-insulator (SOI) radio-frequency (RF) microelectromechanical systems (MEMS) technology compatible with CMOS and high-voltage devices for system-on-a-chip applications is experimentally demonstrated for the first time. This technology allows the integration of RF MEMS switches with driver and processing circuits for single-chip communication applications. The SOI high-voltage device (0.7-/spl mu/m channel length, 2-/spl mu/m drift length, and over 35-V breakdown voltage), CMOS devices (0.7-/spl mu/m channel length and 1.3/-1.2 V threshold voltage), and RF MEMS capacitive switch (insertion loss 0.14 dB at 5 GHz and isolation 9.5 dB at 5 GHz) are designed and fabricated to show the feasibility of building fully integrated RF systems. The performance of the fabricated RF MEMS capacitive switches on low-resistivity and high-resistivity SOI substrates will also be compared.  相似文献   

13.
Distributed MEMS analog phase shifter with enhanced tuning   总被引:1,自引:0,他引:1  
The design, fabrication, and measurement of a tunable microwave phase shifter is described. The phase shifter combines two techniques: a distributed capacitance transmission line phase shifter, and a large tuning range radio frequency (RF) microelectromechanical system (MEMS) capacitor. The resulting device is a large bandwidth, continuously tunable, low-loss phase shifter, with state-of-the-art performance. Measurements indicate analog tuning of 170/spl deg/ phase shift per dB loss is possible at 40 GHz, with a 538/spl deg/ phase shift per centimeter. The structure is realized with high-Q MEMS varactors, capable of tuning C/sub max//C/sub min/= 3.4. To our knowledge, this presents the lowest loss analog millimeter wave phase shifter performance to date.  相似文献   

14.
提出了一种横向接触式RF MEMS开关,采用金属叉指结构进行驱动。通过结构建模和性能仿真,对叉指结构进行了优化,提高了机械性能,减小开关的尺寸。通过加大横向接触面积,降低接触电阻,减小开关导通态的插损,提高了开关的射频性能。利用低温表面牺牲层工艺在砷化镓衬底上进行了开关的流片,通过工艺的改进最终得到满意的流片结果。测试结果表明:在DC-20GHz频率范围内,开关的插入损耗小于0.3dB,隔离度大于20dB。  相似文献   

15.
针对具有低损耗、高隔离度性能的微机电系统(Micro-Electro-Mechanical System,MEMS)开关,介绍了串联DC式和并联电容式的开关结构模型,并对并联电容式MEMS开关的工作原理、等效电路模型和制造工艺流程进行了描述,利用其模型研究了开关的微波传输性能,设计了一款电容耦合式开关并进行了仿真。由仿真结果可得,开关"开态"时的插入损耗在40 GHz以内优于-0.3 dB;开关"关态"时的隔离度在20~40 GHz相对较宽的频带内优于-20 dB。  相似文献   

16.
In this paper, fully integrated radio frequency (RF) microelectromechanical system (MEMS) switches with piezoelectric actuation have been proposed, designed, fabricated, and characterized. At a very low operation voltage of 2.5V, reliable and reproducible operation of the fabricated switch was obtained. The proposed RF MEMS switch is comprised of a piezoelectric cantilever actuator with a floated contact electrode and isolated CPW transmission line suspended above the silicon substrate. The measured insertion loss and isolation of the fabricated piezoelectric switch are -0.22 dB and -42dB at a frequency of 2GHz, respectively.  相似文献   

17.
Miniature and tunable filters using MEMS capacitors   总被引:4,自引:0,他引:4  
Microelectromechanical system (MEMS) bridge capacitors have been used to design miniature and tunable bandpass filters at 18-22 GHz. Using coplanar waveguide transmission lines on a quartz substrate (/spl epsiv//sub r/ = 3.8, tan/spl delta/ = 0.0002), a miniature three-pole filter was developed with 8.6% bandwidth based on high-Q MEMS bridge capacitors. The miniature filter is approximately 3.5 times smaller than the standard filter with a midband insertion loss of 2.9 dB at 21.1 GHz. The MEMS bridges in this design can also be used as varactors to tune the passband. Such a tunable filter was made on a glass substrate (/spl epsiv//sub r/ = 4.6, tan/spl delta/ = 0.006). Over a tuning range of 14% from 18.6 to 21.4 GHz, the miniature tunable filter has a fractional bandwidth of 7.5 /spl plusmn/ 0.2% and a midband insertion loss of 3.85-4.15 dB. The IIP/sub 3/ of the miniature-tunable filter is measured at 32 dBm for the difference frequency of 50 kHz. The IIP/sub 3/ increases to >50 dBm for difference frequencies greater than 150 kHz. Simple mechanical simulation with a maximum dc and ac (ramp) tuning voltages of 50 V indicates that the filter can tune at a conservative rate of 150-300 MHz//spl mu/s.  相似文献   

18.
金铃 《现代雷达》2006,28(10):82-84
介绍了一个RF MEMS单刀四掷矩阵开关的设计,用四个串联式、电阻接触型、悬臂梁RF MEMS开关制作在微带电路板上完成。在频带1~5GHz内,单刀四掷矩阵开关的插入损耗〈0.8dB,开关隔离度〉38dB,驻波系数〈1.2。悬臂梁开关的激励电压为直流电压35~45V。  相似文献   

19.
This paper, the first of two parts, presents an electromagnetic model for membrane microelectromechanical systems (MEMS) shunt switches for microwave/millimeter-wave applications. The up-state capacitance can be accurately modeled using three-dimensional static solvers, and full-wave solvers are used to predict the current distribution and inductance of the switch. The loss in the up-state position is equivalent to the coplanar waveguide line loss and is 0.01-0.02 dB at 10-30 GHz for a 2-μm-thick Au MEMS shunt switch. It is seen that the capacitance, inductance, and series resistance can be accurately extracted from DC-40 GHz S-parameter measurements. It is also shown that dramatic increase in the down-state isolation (20+ dB) can be achieved with the choice of the correct LC series resonant frequency of the switch. In part 2 of this paper, the equivalent capacitor-inductor-resistor model is used in the design of tuned high isolation switches at 10 and 30 GHz  相似文献   

20.
为了有效解决信号/频谱分析仪等微波测试仪器尺寸较大、信号损耗高、选通切换效率差等问题,将射频MEMS开关引入交指型可切换滤波器结构中。通过MEMS四掷开关选择具有不同中心频率的交指型谐振器,实现在6~14 GHz内四个频率的射频信号切换过滤。利用HFSS电磁波仿真软件对滤波结构的几何参数进行优化计算,得到四个可切换频率的插入损耗,分别为1.26 dB@6.86 GHz、1.03 dB@9.16 GHz、1.23dB@11.78 GHz、1.07 dB@12.26 GHz,整体面积约为7.95 mm3。与其他可切换滤波器相比,该可切换滤波器将MEMS四掷开关与交指型谐振器集成到一起,具有低插损、小尺寸、高集成度等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号