首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effect of exercise rehabilitation on the oxygen cost of ambulation in patients with peripheral arterial occlusive disease (PAOD) was evaluated with specific emphasis on the effects of exercise rehabilitation on the slow component of VO2. Because the slow component of VO2 represents an increase in VO2 despite constant-intensity exercise, it can profoundly affect the relative energy cost of exercise in individuals with a low functional capacity. Twenty-six patients with intermittent claudication performed treadmill walking at 2.0 mph/0% grade for 20 min or until maximal claudication pain before and after 4 months of rehabilitation. The slow component of VO2 during the treadmill test was defined as the difference between the end-exercise VO2 and the VO2 observed at minute 3. Ankle/brachial systolic pressure index (ABI) was measured before and immediately following the exercise test. Rehabilitation consisted of 3 d x wk(-1) of treadmill walking for 15-30 min at 60-70% of VO2peak. The slow component of VO2 and end-exercise VO2 at pretraining (0.75 +/- 0.90 and 11.12 +/- 2.10 mL x kg[-1] x min[-1]) were significantly reduced after 4 months of exercise rehabilitation (-0.07 +/- 1.11 and 10.07 +/- 1.80 mL x kg[-1] x min[-1]; P < 0.05). Exercise rehabilitation also significantly (P < 0.05) increased the post-exercise ABI (pre-rehabilitation = 0.36 +/- 0.26, post-rehabilitation = 0.43 +/- 0.25). These data suggest that 4 months of exercise rehabilitation: 1) improves walking economy in PAOD patients because of a decreased slow component of VO2, and 2) increases post-exercise ABI.  相似文献   

2.
This study compared body sway, a measure of postural stability, between regular brisk walkers and control subjects. Furthermore, the relationship between body sway and physical activity duration in postmenopausal women was examined. Subjects were 31 healthy postmenopausal women, aged 61-71 years. They were recruited from a randomized controlled study of the influence of brisk walking on bone: 16 women had been completing 20 min d-1 brisk walking, whilst 15 controls had been completing habitual activities only. Body sway was measured using a swaymeter that measured displacement at the waist whilst subjects stood on a compliant surface, with eyes closed, for 1 min. The activity was measured using activity monitors which were worn at the waist for 3 consecutive days. Body sway (eyes closed, standing on a compliant surface) was lower in walkers than in controls: 2,958 +/- (SE) 270 versus 5,225+/-371 mm2 min-1, respectively (p < 0.05). A negative correlation was found between body sway and minutes of physical activity (r = -0.47, p < 0.01). Analysis of variance revealed that body sway differed significantly (p < 0.05) between groups of differing physical activity participation, being 4,839 +/- 499, 4,167 +/- 516, and 2,877 +/- 362 mm2 min-1, respectively, in women completing <20, 20-40, and >40 min d-1 of physical activity. Body sway was significantly lower in the most active group than in the least active (p < 0.01). These data suggest that postural stability is better in regular walkers than in control subjects. Furthermore, a dose-response relationship was observed between physical activity and postural stability in postmenopausal women. These findings provide a preliminary indication that brisk walking, a low-cost and acceptable form of physical activity for the elderly, could be incorporated into strategies for improving balance in the elderly.  相似文献   

3.
PURPOSE: The purpose of this study was to compare the metabolic and cardiovascular responses of movement in forward (FM), backward (BM), and lateral (LM) directions. METHODS: Thirteen athletes with the following characteristics (mean +/- SD) were evaluated: age 21+/-3 yr, height 172.0+/-9.0 cm, weight 62.92+/-9.05 kg, and VO2max 54.13+/-7.42 mL x kg(-1) x min(-1). Subjects were evaluated at 80.45 and 134.08 m x min(-1). A repeated measures ANOVA was used for statistical analysis (P < 0.05). RESULTS: At 80.45 m x min(-1), the following respective VO2 mL x kg(-1) x min(-1) and heart rate (HR) beats x min(-1) responses were: FM = 12.42+/-2.29, 113+/-10; BM = 15.95+/-2.45, 132+/-16; and LM = 22.10+/-4.76, 140+/-15. Both VO2 and HR were significantly different between conditions: LM > BM > FM. At 134.08 m x min(-1), the following respective VO2 and HR responses were: FM = 27.15+/-2.51, 146+/-7; BM = 31.33+/-5.77, 168+/-11; and LM = 32.58+/-5.74, 169+/-10. At 134.08 m x min(-1) neither HR or VO2 were significantly different between LM or BM (LM, BM, > FM). Stride length and stride frequency were also significantly different between conditions. These results indicate the variation in the energy cost of FM, BM, and LM.  相似文献   

4.
BACKGROUND: The exclusive effect of caffeine ingestion on exercise thermoregulation is unclear; data indicate that caffeine may have a positive effect, a negative effect, or no effect. METHODS: Rectal (TRE) and mean skin (TSK) temperatures, skin heat conductance (HSK), and sweat rate (MSW) were measured during 30 min of rest and subsequent 70 min of submaximal cycle-ergometer exercise (67% VO2PEAK) in 11 aerobically conditioned men (mean +/- SD 29 +/- 6 yr, 49 +/- 6 mL x min(-1) x kg(-1) VO2PEAK) under two conditions: a caffeine (10 mg x kg(-1) ingestion (CI) session and a noncaffeine ingestion (NCI) control session. RESULTS: There were no significant differences in physiological or thermoregulatory parameters during exercise: X (+/-SE) end exercise levels for the NCI and CI sessions, respectively, were VO2 = 2.50 +/- 0.09 vs. 2.55 +/- 0.09 L x min(-1); heart rate = 145 +/- 7 vs. 145 +/- 5 bpm; HSK = 30 +/- 3 vs. 28 +/- 3 kcal x m(-2) x h(-1) x degrees C(-1); MSW = 393 +/- 35 vs. 378 +/- 36 g x m(-2) x h(-1); and TRE = 38.3 +/- 0.2 vs. 38.4 +/- 0.1 degrees C. Control TSK was lower than that for CI by 0.4 to 0.5 degrees C at rest and during exercise. CONCLUSION: Ingestion of a high level (10 mg x kg(-1) of caffeine has no effect on skin heat conductance, sweating, or the rate of increase and final level of rectal temperature during moderate, submaximal leg exercise.  相似文献   

5.
We tested whether oxygen consumption (VO2) was dependent on oxygen delivery (QO2) in 10 patients with septic shock when QO2 was changed by the use of the inotropic agent, dobutamine. The mean acute physiology and chronic health evaluation (APACHE) II score of the patients was 27.3 +/- 8.1 with a mean blood pressure on entry of 66.8 +/- 12.4 mm Hg, and all had been volume resuscitated to a pulmonary artery occlusion pressure of greater than 10 mm Hg. We measured VO2 by analysis of respiratory gases (VO2G) while calculating VO2 by the Fick equation (VO2F) at three different O2 deliveries. When the dobutamine infusion rate was increased from 2.5 +/- 4.0 to 12.3 +/- 6.0 micrograms/kg/min, thermodilution cardiac output increased from 7.7 +/- 2.6 to 10.1 +/- 2.7 L/min (P < .01). Accordingly, dobutamine increased QO2 from 13.5 +/- 3.8 to 18.2 +/- 4.3 mL/min per kg (increase of 36.4% +/- 19.7%; P < .01), but VO2G did not increase (3.2 +/- 0.5 to 3.2 +/- 0.6 mL/min per kg). During these same interventions, the VO2F tended to increase (2.9 +/- 0.7 to 3.4 +/- 0.8 mL/min per kg, P < .06), presumably a spurious correlation because of measurement errors shared by the calculation of VO2F and QO2. Neither lactic acidosis nor acute respiratory distress syndrome (ARDS) conferred supply dependence of VO2G, but the presence of ARDS was predictive of death in this cohort. It is concluded that VO2 is independent of QO2 in patients with septic shock and lactic acidosis. These data confirm that maximizing QO2 beyond values achieved by initial fluid and vasoactive drug resuscitation of septic shock does not improve tissue oxygenation as determined by respiratory gas measurement of VO2.  相似文献   

6.
The American College of Sports Medicine (ACSM) equation for estimating oxygen consumption (VO2) is often inappropriately applied to non-steady-state treadmill exercise. Therefore, it was the purpose of this investigation to develop an equation to estimate VO2 that could be applied to non-steady-state treadmill exercise in a population of patients with osteoarthritis of the knee, and to assess the generalizability of this equation for estimating VO2peak in patients with cardiovascular disease. Subjects for the investigation were 414 participants in the Fitness and Arthritis in Seniors Trial (FAST), and 362 patients with cardiovascular disease. Results from the FAST subjects showed that the ACSM equation was inappropriate for estimating VO2 during non-steady-state incremental treadmill walking. We developed the following equation (FAST) using speed and the interaction between speed and grade as the predictor variables during treadmill walking: VO2(ml.kg-1.min-1) = 0.0698 x speed(m.min-1) + 0.8147 x grade(%) x speed(m.min-1) + 7.533 ml.kg-1.min-1 The generalizability of the FAST equation for estimating VO2peak was evaluated in the patients with cardiovascular disease. The measured VO2peak of these patients was 23.7 +/- 0.3 ml.kg-1.min-1, whereas the VO2peak values estimated from the FAST equation and the ACSM equation were 24.1 +/- 0.3 and 33.2 +/- 0.5 ml.kg-1.min-1, respectively. No significant differences were found between the measured VO2peak and that estimated from the FAST equation. The VO2peak estimated from the ACSM equation was significantly greater than the measured VO2peak. These results suggest it is more appropriate to use the FAST equation rather than the ACSM equation to estimate VO2 in older patients with either osteoarthritis of the knee or cardiovascular disease.  相似文献   

7.
Various situations present a challenge to determine oxygen uptake (VO2) accurately simply because of the restrictions imposed by the equipment employed. This investigation was undertaken to 1) compare a select number of recovery VO2 measurements with respect to their accuracy in estimating actual exercise VO2 and 2) to determine whether absolute workload or VO2max affect this relationship. Fifteen subjects [8 highly trained (HT), VO2max +/- SD = 70.2 +/- 3.5 ml/kg . min-1 and 7 untrained (UT), VO2max = 49.7 +/- 3.8 ml/kg . min-1] completed a number of 5 min workbouts on a bicycle ergometer at 25-70% VO2max (VO2 = .899--3.879 l . min-1). VO2 and VCO2 (l . min-1) were monitored continuously throughout the exercise and for 5 min of recovery via a breath-by-breath system. The results indicated that 1) exercise VO2 +/- Sy.x can be estimated from several recovery collection periods, the first breath y = .953X + .441 +/- .319, the first two breaths y = 1.046X + .327 +/- .270, the first three breaths y = 1.089X + .260 +/- .241, and the second three breaths y = 1.101X + .387 +/- .234, and 2) VO2max does not affect this relationship (p greater than 0.05) while increasing absolute workload produces a greater exercise VO2 underestimation (p less than 0.05). It was concluded that using this method exercise VO2 can be estimated with reasonable accuracy (Sy.x = .234--.319, r = .92--.94, p less than 0.01).  相似文献   

8.
The gender differences in peak oxygen uptake (VO2peak) for various modes of exercise have been examined previously; however, no direct gender comparisons have been made during repetitive lifting (RL). In the present study the VO2peak between RL and treadmill running (TR) was compared between 20 men [mean (SD) age, height, body mass and body fat: 21 (3) years, 1.79 (0.06) m, 81 (9) kg, 19 (6)%, respectively] and 20 women [mean (SD) age, height, body mass and body fat: 21 (3) years, 1.63 (0.05) m, 60 (7) kg, 27 (6)%, respectively]. VO2peak (l x min[-1]), defined as the highest value obtained during exercise to volitional fatigue, was determined using discontinuous protocols with treadmill grade or box mass incremented to increase exercise intensity. For RL VO2peak, a pneumatically driven shelf was used to lower a loaded box to the floor, and subjects then lifted the box, at a rate of 15 lifts x min(-1). VO2peak (l x min(-1) and ml x kg(-1) x min[-1]) and minute ventilation (VE, l x min[-1]) were determined using an on-line gas analysis system. A two-way repeated measures analysis of variance revealed significant gender effects, with men having higher values for VO2peak (l x min(-1) and ml x kg(-1) x min[-1]) and VE, but women having higher values of the ventilatory equivalent for oxygen (VE/VO2). There were also mode of exercise effects, with TR values being higher for VO2peak (l x min(-1) and ml x kg(-1) x min[-1]) and VE and an interaction effect for VO2peak (l x min(-1) and ml x kg(-1) x min[-1]) and VE/VO2. The women obtained a greater percentage (approximately 84%) of their TR VO2peak during RL than did the men (approximately 79%). There was a marginal tendency for women to decrease and men to increase their VE/VO2 when comparing TR with RL. The magnitude of the gender differences between the two exercise modalities appeared to be similar for heart rate, VE and R, but differed for VO2peak (l x min(-1) and ml x kg(-1) x min[-1]). Lifting to an absolute height (1.32 m for the RL protocol) may present a different physical challenge to men and women with respect to the degree of involvement of the muscle groups used during lifting and ventilation.  相似文献   

9.
The assumption that working on board ship is more strenuous than comparable work ashore was investigated in this study. Various physiological parameters (VO2, VCO2, VE and HR) have been measured to determine the energy expenditure of subjects walking slowly on a moving platform (ship motion simulator). Twelve subjects (eight men and four women) walked either freely on the floor or on a treadmill at a speed of 1 m x s(-1). Platform motion was either in a heave, pitch or roll mode. These three conditions were compared with a control condition in which the platform remained stationary. The results showed that during pitch and roll movements of the platform, the energy expenditure for the same walking task was about 30% higher than under the stationary control condition (3.6 J x kg[-1] x m[-1] vs 2.5 J x kg[-1] x m[-1], P < 0.05) for both walking on a treadmill and free walking. The heart rate data supported the higher energy expenditure results with an elevation of the heart rate (112 beats x min[-1] vs 103 beats x min[-1], P < 0.05). The heave condition did not differ significantly from the stationary control condition. Pitch and roll were not significantly different from each other. During all experimental conditions free walking resulted in a higher energy cost of walking than treadmill walking (3.5 J x kg[-1] x m[-1] vs 2.7 J x kg[-1] x m[-1], P < 0.05) at the same average speed. The results of this experiment were interpreted as indicating that the muscular effort, needed for maintaining balance when walking on a pitching or rolling platform, resulted in a significantly higher work load than similar walking on a stable or a heaving floor, independent of the mode of walking. These results explain in part the increased fatigue observed when a task is performed on a moving platform.  相似文献   

10.
Effect of weight training exercise and treadmill exercise on postexercise oxygen consumption. Med. Sci. Sports Exerc., Vol. 30, No. 4, pp. 518-522, 1998. To compare the effect of weight training (WT) and treadmill (TM) exercise on postexercise oxygen consumption (VO2), 15 males (mean +/- SD) age = 22.7 +/- 1.6 yr; height = 175.0 +/- 6.2 cm; mass = 82.0 +/- 14.3 kg) performed a 27-min bout of WT and a 27-min bout of TM exercise at matched rates of VO2. WT consisted of performing two circuits of eight exercises at 60% of each subject's one repetition maximum with a work/rest ratio of 45 s/60 s. Approximately 5 d after WT each subject walked or jogged on the TM at a pace that elicited an average VO2 matched with his mean value during WT. VO2 was measured continuously during exercise and the first 30 min into recovery and at 60 and 90 min into recovery. VO2 during WT (1.58 L.min-1) and TM exercise (1.55 L.min-1) were not significantly (P > 0.05) different; thus the two activities were matched for VO2. Total oxygen consumption during the first 30 min of recovery was significantly higher (P < 0.05) as a result of WT (19.0 L) compared with that during TM exercise (12.7 L). However, VO2 values at 60 (0.32 vs 0.29 L.min-1), and 90 min (0.33 vs 0.30 L.min-1) were not significantly different (P > 0.05) between WT and TM exercise, respectively. The results suggest that, during the first 30 min following exercise. WT elicits a greater elevated postexercise VO2 than TM exercise when the two activities are performed at matched VO2 and equal durations. Therefore, total energy expenditure as a consequence of WT will be underestimated if based on exercise VO2 only.  相似文献   

11.
It is increasingly recognized that alterations in non-insulin-mediated glucose uptake (NIMGU) play an important pathogenic role in disorders of carbohydrate metabolism. This study was conducted to determine whether NIMGU is impaired in elderly patients with type 2 diabetes. Healthy elderly control subjects (n = 19, age 76 +/- 1 years, BMI 26.8 +/- 1.1 kg/m2) and elderly patients with type 2 diabetes (n = 19, age 76 +/- 2 years, BMI 27.5 +/- 0.9 kg/m2) underwent a 240-min glucose clamp study. Octreotide was infused to suppress endogenous insulin release, and tritiated glucose methodology was used to measure glucose uptake and disposal rates. For the first 180 min, glucose was kept at fasting levels. From 180 to 240 min, glucose was increased to 11 mmol/l. At fasting glucose levels, glucose uptake was similar in both groups. However, glucose clearance was reduced in patients with diabetes (control 1.68 +/- 0.05 ml x kg(-1) x min(-1); diabetes 1.34 +/- 0.07 ml x kg(-1) x min(-1), P < 0.0001). During hyperglycemia, glucose uptake was reduced in patients with diabetes (control 3.16 +/- 0.09 mg x kg(-1) x min(-1); diabetes 2.57 +/- 0.11 mg x kg(-1) x min(-1), P < 0.0001). Peripheral glucose effectiveness (SG) was less in patients with diabetes (control 1.28 +/- 0.04 ml x kg(-1) x min(-1); diabetes 0.94 +/- 0.08 ml x kg(-1) x min(-1), P < 0.0001). Hepatic glucose output and hepatic SG were not different between groups. We conclude that the effect of glucose on glucose uptake is impaired in elderly patients with type 2 diabetes, a finding that may have therapeutic implications for this patient population.  相似文献   

12.
There is evidence that a low-density lipoprotein (LDL) subfraction profile of increased concentrations of small, dense LDL particles is less common among trained than among sedentary normocholesterolemic men, but it is still uncertain whether there is a similar association in hypercholesterolemia also. Therefore, we determined the lipid and apolipoprotein concentration and composition of six LDL subfractions (density gradient ultracentrifugation) in 20 physically fit, regularly exercising (>three times per week) hypercholesterolemic men and 20 sedentary hypercholesterolemic controls. Trained (maximal oxygen consumption [VO2max], 57.3 +/- 7.4 mL/kg/min) and sedentary (VO2max, 37.5 +/- 8.8 mL/kg/min) individuals (aged 35 +/- 11 years; body mass index [BMI], 23.9 +/- 2.7 kg/m2) were matched for LDL apolipoprotein (apo) B levels (108 +/- 23 and 112 +/- 36 mg/dL, respectively). Trained subjects had significantly lower serum triglyceride (P < .05) and very-low-density lipoprotein (VLDL) cholesterol levels (P < .05) and higher high-density lipoprotein 2 (HDL2) cholesterol levels (P < .01) than sedentary controls. LDL particle distribution showed that trained individuals had significantly less small, dense LDL (d = 1.040 to 1.063 g/mL) and more large LDL (d = 1.019 to 1.037 g/mL) subfraction particles than sedentary controls, despite equal total LDL particle number. Analysis of LDL composition showed that LDL particles of hypercholesterolemic trained men had a higher free cholesterol content than LDL of untrained hypercholesterolemic men. Small, dense LDL in hypercholesterolemic trained men were richer in phospholipids than those in sedentary controls. These data demonstrate the significant influence of aerobic fitness on lipoprotein subfraction concentration and composition, thereby emphasizing the role of exercise in the treatment and risk reduction of hypercholesterolemia.  相似文献   

13.
The VO2-power regression and O2 demand predicted for a supra-VO2peak intensity (i.e., 432 W) were determined in seven well-trained male cyclists (mean +/- SD: VO2peak = 5.29 +/- 0.51 l.min-1), using five incremental exercise protocols. These protocols were either continuous (CON) or discontinuous (DISCON), and comprised five to eight work bouts ranging in intensity between 40% and 85% VO2peak; the work bouts differed in duration (4-15 min), and the VO2 was measured during the 4th minute (CON4, DISCON4), from min 4 to 6 (DISCON6), 8 to 10 (DISCON10), or 13 to 15 (DISCON15) of each work bout. The y-intercepts of the VO2-power regressions were not different (P > 0.05), whereas the slope was higher (P < or = 0.01) when determined using DISCON10 (12.7 +/- 0.9 ml.min-1.W-1) and DISCON15 (12.5 +/- 0.9 ml.min-1.W-1) compared with DISCON6 (12.2 +/- 1.0 ml.min-1.W-1), DISCON4 (11.6 +/- 1.1 ml.min-1.W-1) or CON4 (11.9 +/- 0.7 ml.min-1.W-1). The O2 demand (at 432 W) was also higher (P < or = 0.01) for DISCON10 (6.05 +/- 0.29 l.min-1) and DISCON15 (6.05 +/- 0.28 l.min-1) compared with DISCON6 (5.88 +/- 0.31 l.min-1), DISCON4 (5.70 +/- 0.31 l.min-1) and CON4 (5.82 +/- 0.25 l.min-1). This demonstrates that the O2 demand predicted for high power outputs depends on the incremental protocol used.  相似文献   

14.
We tested the hypothesis that adenosine is involved in regulating substrate metabolism during exercise. Seven trained cyclists were studied during 30 minutes of exercise at approximately 75% maximal oxygen uptake (VO2max). Lipid metabolism was evaluated by infusing [2H5]glycerol and [1-13C]palmitate, and glucose kinetics were evaluated by infusing [6,6-2H]glucose. Fat and carbohydrate oxidation were also measured by indirect calorimetry. The same subjects performed two identical exercise tests, but in one trial theophylline, a potent adenosine receptor antagonist, was infused for 1 hour before and throughout exercise. Theophylline did not increase whole-body lipolysis (glycerol rate of appearance [Ra]) or free fatty acid (FFA) release during exercise, but fat oxidation was lower than control values (9.5 +/- 3.0 v 18.0 +/- 4.2 micromol x min(-1) x kg(-1), P < .01). Glucose Ra was not affected by theophylline infusion, but glucose uptake was lower (31.6 +/- 4.1 v 40.4 +/- 5.0 micromol x min(-1) x kg(-1), P < .05) and glucose concentration was higher (6.4 +/- 0.6 v 5.8 +/- 0.4 mmol/L, P < .05) than in the control trial. Total carbohydrate oxidation (302.3 +/- 26.2 v 265.5 +/- 11.7 micromol x min(-1) x kg(-1), P < .06), estimated muscle glycogenolysis (270.7 +/- 23.1 v 225.1 +/- 9.7 micromol x min(-1) x kg(-1), P < .05), and plasma lactate concentration (7.9 +/- 1.6 v 5.9 +/- 1.1 mmol/L, P < .001) were also higher during the theophylline trial. These data suggest that adenosine may play a role in stimulating glucose uptake and restraining glycogenolysis but not in limiting lipolysis during exercise.  相似文献   

15.
To evaluate the magnitude of the stress on the aerobic and the anaerobic energy release systems during high intensity bicycle training, two commonly used protocols (IE1 and IE2) were examined during bicycling. IE1 consisted of one set of 6-7 bouts of 20-s exercise at an intensity of approximately 170% of the subject's maximal oxygen uptake (VO2max) with a 10-s rest between each bout. IE2 involved one set of 4-5 bouts of 30-s exercise at an intensity of approximately 200% of the subject's VO2max and a 2-min rest between each bout. The accumulated oxygen deficit of IE1 (69 +/- 8 ml.kg-1, mean +/- SD) was significantly higher than that of IE2 (46 +/- 12 ml.kg-1, N = 9, p < 0.01). The accumulated oxygen deficit of IE1 was not significantly different from the maximal accumulated oxygen deficit (the anaerobic capacity) of the subjects (69 +/- 10 ml.kg-1), whereas the corresponding value for IE2 was less than the subjects' maximal accumulated oxygen deficit (P < 0.01). The peak oxygen uptake during the last 10 s of the IE1 (55 +/- 6 ml.kg-1.min-1) was not significantly less than the VO2max of the subjects (57 +/- 6 ml.kg-1.min-1). The peak oxygen uptake during the last 10 s of IE2 (47 +/- 8 ml.kg-1.min-1) was lower than the VO2max (P < 0.01). In conclusion, this study showed that intermittent exercise defined by the IE1 protocol may tax both the anaerobic and aerobic energy releasing systems almost maximally.  相似文献   

16.
The aim of the present study was to estimate insulin secretion, insulin sensitivity (SI), and glucose effectiveness at basal insulin (SG) in subjects with bulimia nervosa. Eight bulimic patients and eight age-, body mass index-, and sex-matched healthy control subjects without a family history of diabetes were studied. The subjects all had normal glucose tolerance. They underwent a modified frequently sampled intravenous glucose tolerance test; glucose (300 mg/kg body weight) was administered, and insulin (4 mU/kg body weight/min) was infused from 20 to 25 minutes after administration of glucose. SI and SG were estimated by Bergman's minimal model method. Basal insulin (27 +/- 3 v 45 +/- 3 pmol/L) was significantly lower in bulimic patients than in normal controls (P < .05), but basal glucose was similar between the two groups (4.5 +/- 0.1 v 4.9 +/- 0.1 mmol/L, P > .05). The glucose disappearance rate (KG) and acute insulin response to glucose estimated by the intravenous glucose tolerance test (AIR(glucose)) were similar between the two groups (KG, 1.35 +/- 0.29 v 2.20 +/- 0.21 min(-1), P > .05; AIR(glucose), 2,920 +/- 547 v 2,368 +/- 367 pmol/L x min, P > .05). No significant difference was observed in SI between the two groups (1.34 +/- 0.18 v 1.25 +/- 0.20 x 10(-4) x min(-1) x pmol/L(-1), P > .05). On the other hand, glucose effectiveness at basal (SG) and zero (GEZI) insulin was significantly diminished in comparison to normal controls (SG, 0.011 +/- 0.002 v 0.024 +/- 0.002 min(-1), P < .01; GEZI, 0.008 +/- 0.002 v 0.017 +/- 0.003 min(-1), P < .01). Thus, bulimic patients with normal glucose tolerance without a family history of diabetes were characterized by normal insulin secretion, normal SI, and reduced SG and GEZI.  相似文献   

17.
AIMS: Most studies in chronic heart failure have only included patients with marked left ventricular systolic dysfunction (i.e. ejection fraction < or =0.35), and patients with mild left ventricular dysfunction are usually excluded. Further, exercise capacity strongly depends on age, but age-adjustment is usually not applied in these studies. Therefore, this study sought to establish whether (age-adjusted) peak VO2 was impaired in patients with mild left ventricular dysfunction. METHODS: Peak VO2 and ventilatory anaerobic threshold were measured in 56 male patients with mild left ventricular dysfunction (ejection fraction 0.35-0.55; study population) and in 17 male patients with a normal left ventricular function (ejection fraction >0.55; control population). All patients had an old (>4 weeks) myocardial infarction. By using age-adjusted peak VO2 values, a 'decreased' exercise capacity was defined as < or = predicted peak VO2 - 1 x SD (0.81 of predicted peak VO2), and a severely decreased exercise capacity as < or = predicted peak VO2 - 2 x SD (0.62 of predicted peak VO2). RESULTS: Patients in the study population (age 52+/-9 years; ejection fraction 0.46+/-0.06) were mostly asymptomatic (NYHA class I: n=40, 76%), while 16 patients (24%) had mild symptoms, i.e. NYHA class II. All 17 controls (age 57+/-8 years) were asymptomatic. Mean peak VO2 was lower in patients with mild left ventricular dysfunction (23.6+/-5.7 vs 27.1+/-4.6 ml x min(-1) x kg(-1) in controls, P<0.05). In 75% of the study population patients (n=42) age-adjusted peak VO2 was decreased (NYHA I/II: n=29/13) and in 18% of them severely decreased (n=10; NYHA I/II: n=6/4). In contrast, only three patients (18%) in the control population had a decreased and none a severely decreased age-adjusted peak VO2. CONCLUSION: In patients with mild left ventricular dysfunction, who have either no or only mild symptoms of chronic heart failure, a substantial proportion has an impaired exercise capacity. By using age-adjustment, impairment of exercise capacity becomes more evident in younger patients. Patients with mild left ventricular dysfunction are probably under-diagnosed, and this finding has clinical and therapeutic implications.  相似文献   

18.
This study was performed to clarify the relationship between isocapnic buffering and maximal aerobic capacity (VO2max) in athletes. A group of 15 trained athletes aged 21.1 (SD 2.6) years was studied. Incremental treadmill exercise was performed using a modified version of Bruce's protocol for determination of the anaerobic threshold (AT) and the respiratory compensation point (RC). Ventilatory and gas exchange responses were measured with an aeromonitor and expressed per unit of body mass. Heart rate and ratings of perceived exertion were recorded continuously during exercise. The mean VO2max, oxygen uptake (VO2) at AT and RC were 58.2 (SD 5.8) ml x kg(-1) x min(-1), 28.0 (SD 3.3) ml x kg(-1) x min(-1) and 52.4 (SD 6.7) ml x kg(-1) x min(-1), respectively. The mean values of AT and RC, expressed as percentages of VO2max, were 48.3 (SD 4.2)% and 90.0 (SD 5.2)%, respectively. The mean range of isocapnic buffering defined as VO2 between AT and RC was 24.4 (SD 4.5) ml x kg(-1) x min(-1), and the mean range of hypocapnic hyperventilation (HHV) defined as VO2 between RC and the end of exercise was 5.8 (SD 3.0) ml x kg(-1) x min(-1). The VO2max per unit mass was significantly correlated with AT (r = 0.683, P < 0.01). In addition, VO2max/mass was closely correlated with both the range of isocapnic buffering (r = 0.803, P < 0.001) and RC (r = 0.878, P < 0.001). However, no correlation was found between VO2max per unit mass and the range of HHV (r = 0.011, NS.). These findings would suggest that the prominence of isocapnic buffering, in addition to the anaerobic threshold, may have been related to VO2max of the athletes. The precise mechanisms underlying this proposed relationship remain to be elucidated.  相似文献   

19.
PURPOSE: The aim of this study was to examine the variability of energy cost (Cw) and race walking gait after a 3-h walk at the competition pace in race walkers of the same performance level. METHODS: Nine competitive race walkers were studied. In the same week, after a first test of VO2max determination, each subject completed two submaximal treadmill walks (6 min length, 0% grade, 12 km X h(-1) speed) before and after a 3-h overground test completed at the individual competition speed of the race walker. During the two submaximal tests, subjects were filmed between the 2nd and the 4th min, and physiological parameters were recorded between the 4th and the 6th min. RESULTS: Results showed two trends. On the one hand, we observed a significant and systematic increase in energy cost of walking (mean deltaCw = 8.4%), whereas no variation in the gait kinematics prescribed by the rules of race walking was recorded. On the other hand, this increase in metabolic energy demand was accompanied by variations of different magnitude and direction of stride length, of the excursion of the heel and of the maximal ankle flexion at toe-off among the race walkers. CONCLUSION: These results indicated that competitive race walkers are able to maintain their walking gait with exercise duration apart from a systematic increase in energy cost. Moreover, in this form of locomotion the effect of fatigue on the gait variability seems to be an individual function of the race walk constraints and the constraints of the performer.  相似文献   

20.
The ability of portal vein insulin to control hepatic glucose production (HGP) is debated. The aim of the present study was to determine, therefore, if the liver can respond to a selective decrease in portal vein insulin. Isotopic ([3H]glucose) and arteriovenous difference methods were used to measure HGP in conscious overnight fasted dogs. A pancreatic clamp (somatostatin plus basal portal insulin and glucagon) was used to control the endocrine pancreas. A 40-min control period was followed by a 180-min test period. During the latter, the portal vein insulin level was selectively decreased while the arterial insulin level was not changed. This was accomplished by stopping the portal insulin infusion and giving insulin peripherally at half the basal portal rate (PID, n=5). In a control group (n=5), the portal insulin infusion was not changed and glucose was infused to match the hyperglycemia that occurred in the PID group. A selective decrease of 120 pmol/l in portal vein insulin was achieved (basal, 150+/-36 to last 30 min, 30+/-12 pmol/l) in the absence of a change in the arterial insulin level (basal, 30+/-3 to last 30 min, 36+/-4 pmol/l). Neither arterial nor portal insulin levels changed in the control group (30+/-6 and 126+/-30 pmol/l, respectively). In response to the selective decrease in portal vein insulin, net hepatic glucose output (NHGO) increased significantly, from 8+/-1 (basal) to 30+/-6 and 14+/-2 micromol x kg(-1) x min(-1) by 15 min and the last 30 min (P < 0.05) of the experimental period, respectively. Arterial plasma glucose increased from 5.9+/-0.2 (basal) to 10.5+/-0.4 micromol/l (last 30 min). Three-carbon gluconeogenic precursor uptake fell from 11.2+/-2.9 (basal) to 5.9+/-0.7 micromol x kg(-1) x min(-1) (last 30 min), and thus a change in gluconeogenesis could not account for any of the increase in NHGO. With matched hyperglycemia (basal, 5.5+/-0.3 to last 30 min, 10.5+/-0.8 micromol/l) but no change in insulin, NHGO decreased from 12+/-1 (basal) to 0 (-1+/-6 micromol x kg(-1) x min(-1), last 30 min, P < 0.05) and hepatic gluconeogenic precursor uptake did not change (basal, 8.0+/-1.7 to last 30 min, 8.9+/-2.2 micromol x kg[-1] x min[-1]). Thus, the liver responds rapidly to a selective decrease in portal vein insulin by markedly increasing HGP as a result of increased glycogenolysis. These studies indicate that after an overnight fast, basal HGP (glycogenolysis) is highly sensitive to the hepatic sinusoidal insulin level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号