首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In situ Raman spectroscopy is rapidly becoming a very popular catalyst characterization method because Raman cells are being designed that can combine in situ molecular characterization studies with simultaneous fundamental quantitative kinetic studies. The dynamic nature of catalyst surfaces requires that both sets of information be obtained for a complete fundamental understanding of catalytic phenomena under practical reaction conditions. Several examples are chosen to highlight the capabilities of in situ Raman spectroscopy to problems in heterogeneous catalysis: the structural determination of the number of terminal M=O bonds in surface metal oxide species that are present in supported metal oxide catalysts; structural transformations of the MoO3/SiO2 and MoO3/TiO2 supported metal oxide catalysts under various environmental conditions, which contrast the markedly different oxide–oxide interactions in these two catalytic systems; the location and relative reactivity of the different surface M–OCH3 intermediates present during CH3OH oxidation over V2O5/SiO2 catalysts; the different types of atomic oxygen species present in metallic silver catalysts and their role during CH3OH oxidation to H2CO and C2H4 epoxidation to C2H4O; and information about the oxidized and reduced surface metal oxide species, isolated as well as polymerized species, present in supported metal oxide catalysts during reaction conditions. In summary, in situ Raman spectroscopy is a very powerful catalyst characterization technique because it can provide fundamental molecular‐level information about catalyst surface structure and reactive surface intermediates under practical reaction conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Partial oxidation of propane to acrolein and ammoxidafion to acrylonitrile with molecular oxygen proceed over complex metal oxide catalysts under the restricted conditions of the high partial pressures of both propane and oxygen. The selective formations of acrolein and acrylonitrile also required high reaction temperature around 500°C. Effective catalysts for the selective (amm)oxidation were mostly made up of bismuth oxide and molybdenum oxide and were further modified with another metal oxide. From the studies of the volume effect of pre-catalyst zone on the conversion and the selectivities and of the reactions in the absence of the catalyst, it is suggested that the reactions involve homogeneous reactions in the gas phase where thermally activated propane converts into propene, followed by catalytic oxidation of propene over the metal oxide surface.  相似文献   

3.
The incorporation of nanosciences into catalysis studies has become the most powerful approach to understanding reaction mechanisms of industrial catalysts and designing new-generation catalysts with high selectivity. Nanoparticle catalysts were synthesized via controlled colloid chemistry routes. Nanostructured catalysts such as nanodots and nanowires were fabricated with nanolithography techniques. Catalytic selectivity is dominated by several complex factors including the interface between active catalyst phase and oxide support, particle size and surface structure, and selective blocking of surface sites, etc. The advantage of incorporating nanosciences into the studies of catalytic selectivity is the capability of separating these complex factors and studying them one by one in different catalyst systems. The role of oxide–metal interfaces in catalytic reactions was investigated by detection of continuous hot electron flow in catalytic nanodiodes fabricated with shadow mask deposition technique. We found that the generation mechanism of hot electrons detected in Pt/TiO2 nanodiode is closely correlated with the turnover rate under CO oxidation. The correlation suggests the possibility of promoting catalytic selectivity by precisely controlling hot electron flow at the oxide–metal interface. Catalytic activity of 1.7–7.2 nm monodispersed Pt nanoparticles exhibits particle size dependence, demonstrating the enhancement of catalytic selectivity via controlling the size of catalyst. Pt–Au alloys with different Au coverage grown on Pt(111) single crystal surface have different catalytic selectivity for four conversion channels of n-hexane, showing that selective blocking of catalytic sites is an approach to tuning catalytic selectivity. In addition, presence and absence of excess hydrogen lead to different catalytic selectivity for isomerization and dehydrocyclization of n-hexane on Pt(111) single crystal surface, suggesting that modification of reactive intermediates by the presence of coadsorbed hydrogen is one approach to shaping catalytic selectivity. Several challenges such as imaging the mobility of adsorbed molecules during catalytic reactions by high pressure STM and removing polymeric capping agents from metal nanoparticles remain.  相似文献   

4.
催化氧化技术具有环境友好、节省能源、操作简单等优点,在治理室内甲醛污染方面显示出非常有潜力的应用前景。本文综述了近年来甲醛催化氧化反应机理的研究进展,阐述了在甲醛催化氧化过程中,氧的活化、可能产生的反应中间体以及反应路径。重点介绍了贵金属催化剂(Au、Pt、Pd 和Ag)和过渡金属(Mn、Co和Ce等)氧化物催化剂在甲醛氧化反应过程中,不同金属种类、载体性质和添加剂等对反应机理的影响。介绍了已经商业化的除甲醛产品所采用的反应机理。最后,指出了甲醛催化氧化反应机理存在的问题并对其未来研究发展方向进行了展望。  相似文献   

5.
选择性催化氧化法作为一种新型的脱除H_2S尾气技术,重点是开发具有高活性和多种性能特点的催化剂形成系列产品。总结了金属氧化物催化剂上H_2S选择性催化氧化反应的研究进展。重点介绍了不同载体、活性组分和助剂对催化剂活性的影响;阐述了H_2S选择性催化氧化的反应机理和失活机理,并对金属氧化物催化剂的未来发展方向上进行了展望。  相似文献   

6.
Two types of Ru–ceria catalysts were investigated, one prepared by combustion to create an atomically doped metal oxide, and the other, prepared by impregnation, as supported Ru oxide. They have different physical properties (as measured by X-ray photoelectron spectroscopy, X-ray diffraction, and Infrared spectra of adsorbed CO) but identical catalytic activity for dry reforming of methane. We show that the catalyst for dry reforming is partially reduced using XPS and IR spectroscopy. Furthermore, transient oxidation reaction spectroscopy with oxygen pulses confirms partial reduction of the catalyst is necessary for dry reforming activity.  相似文献   

7.
The catalytic oxidation of p-coumaric acid, a compound representative of the polyphenolic fraction typically found in olive processing and wine-distillery wastewaters, has been investigated using various homogeneous and heterogeneous catalysts. Experiments have been performed with homogeneous Fe2+, Cu2+, Zn2+ and Co2+ ions at pH = 1, and with metal oxide catalysts in suspension at pH 3.5, 7 and 12. Additional uncatalyzed experiments have been performed and the results are compared to those of the catalyzed runs. The temperature was 403 K and the oxygen partial pressure was 2.8 MPa in all runs. The distribution of the reaction intermediates was determined, using HPLC and GCMS as the main analytical techniques, and reaction pathways are speculated. It was found that the use of catalysts could increase the rate of destruction of p-coumaric acid compared to the uncatalyzed reaction, while the distribution of the intermediate compounds was strongly dependent on the pH of the solution. A CuO·ZnOAl2O3 heterogeneous catalyst was found to be effective for the oxidation of p-coumaric acid although leaching of dissolved metals to the solution was found to occur. The stability of the heterogeneous catalysts was investigated by measuring the extent of metal leaching into the solution. The results are discussed with respect to the impact of various conditions (catalyst, pH) on the oxidation of p-coumaric acid and compared to those of the uncatalyzed reaction, studied in previous work.  相似文献   

8.
Model catalyst surfaces, consisting of vapor-deposited metal nanoparticles supported on a planar oxide support, can help to link reactivity studies on well-defined single crystal surfaces with those conducted on high-surface area supported catalysts. When coupled with near atmospheric pressure kinetic and spectroscopic techniques, these well-defined model catalyst surfaces represent a useful approach to combine the power of surface analytical techniques with reactivity studies under relevant reaction conditions. Here, we review recent results of our investigations characterizing the physical and catalytic properties of Pt/SiO2 and Rh/SiO2 model catalyst surfaces. As will be discussed, the model catalyst approach can help simulate the complexities of catalytic reactions on supported catalysts, helping to provide insights into the role of particle size, particle morphology, and surface adsorbates in dictating the observed structure-sensitivity (activity and selectivity) during reactions at near atmospheric pressures.  相似文献   

9.
低碳烯烃选择氧化制备醛类等含氧化合物是生产有机化工中间体及产品的关键步骤,钼铋复合金属氧化物因其优异的催化性能在相关工业界和学术界受到广泛关注,然而目前关于该催化剂上选择氧化反应机制和催化反应本质等科学问题的认识尚未形成统一理论。本文系统综述了钼铋复合金属氧化物在催化低碳烯烃选择氧化制备醛类反应中的研究进展,包括催化剂微观结构的三种调控手段,即主组分钼酸铋物相结构、助剂及载体等对反应性能的影响,并对反应机理进行了深入讨论与总结。最后展望了钼铋复合金属氧化物在该选择氧化反应中的发展前景,为钼铋复合金属氧化物修饰改性及开发高效低碳烯烃选择氧化制含氧化合物催化剂提供思路。  相似文献   

10.
The multifunctional potential of a transition and noble metal catalyst supported on either a single support or combined oxide support in the catalytic partial oxidation of methane (CPOM) is reviewed. The close interaction and interfacial area between the metal, reducible oxide, and acidic support are highlighted, which are crucial for low-temperature CPOM. The effects of the catalyst components and their preparation methods are considered. Their impact on the catalytic performance and stability on the CPOM reaction is evaluated. The two main mechanisms of CPOM, namely, direct partial oxidation and combustion and reforming reaction, are also covered along with the most recent kinetic studies. Finally, the deactivation of the CPOM catalysts is evaluated in terms of coke and carbon deposition along with CO poisoning.  相似文献   

11.
环己烷分子氧选择性氧化固体催化剂研究进展   总被引:2,自引:2,他引:0  
对环己烷分子氧催化氧化制环己酮固体催化剂的最新进展进行了综述,重点介绍了贵金属催化剂、过渡金属及其氧化物催化剂和分子筛催化剂。指出锆基复合氧化物催化剂和负载在分子筛上的金催化剂具有较高的催化活性和选择性及好的稳定性,具有一定的应用及工业化前景。  相似文献   

12.
自2016年Hermans课题组发现六方氮化硼(h-BN)在丙烷氧化脱氢制丙烯(ODHP)反应中优异的烯烃选择性,各类硼基材料引起了研究者强烈的研究兴趣并广泛地用于ODHP反应。与传统金属与金属氧化物基催化剂不同,非金属硼基催化体系能够有效抑制CO x 等过度氧化产物,提高烯烃产率,具有较广阔的工业应用前景。本综述对硼基丙烷氧化脱氢催化剂从催化剂的设计、合成策略和反应性能等方面进行了系统地讨论,阐明了催化剂的构效关系;总结了反应路线、关键中间体、决速步以及催化动力学行为,加深了硼基催化剂催化丙烷氧化脱氢活性位点和机理的理解。指出三配位B—O/B—OH活性位点的有效构建及实现表面与气相自由基反应的协同催化是提高硼基催化剂丙烷脱氢性能的关键。基于目前的研究现状和存在的问题,对硼基催化剂体系研发前景和未来工业化应用进行了展望。  相似文献   

13.
The lattice of an oxide catalyst used for oxidation reactions can act as a reservoir for oxygen, storing and releasing it for reactions at the catalyst surface under appropriate conditions. The implication of this oxygen storage property of an oxide catalyst on its dynamic response characteristics has been investigated through an experimental study of 2-butene oxidation over vanadium oxide as a model reaction. Isothermal reaction rate measurements in a differential reactor and nonisothermal studies in a single pellet reactor have been carried out. Following a step increase in the feed butene concentration, isothermal reaction rate overshoot and pellet temperature overshoot were observed. These observations could be modelled in a qualitatively correct way by a very simple model accounting for the participation of lattice oxygen in the catalytic reactions under dynamic conditions. It is demonstrated through model simulations that the ignition characteristics of a catalyst pellet are significantly affected by the participation of the lattice oxygen, when steady state multiplicity is present.  相似文献   

14.
Environmental electron microscopy has become an important scientific method for fundamental studies of dynamic chemical reaction processes in heterogeneous catalysis and of catalytic growth of carbon nanotubes. Outstanding contributions are resulting from the ability to observe gas‐catalyst surface reactions in situ, on the atomic scale. A great deal of structural and chemical information including lattice modification of working catalysts is possible. This is key to understanding novel reaction processes, including release mechanism of structural oxygen in oxide catalysts in selective oxidation of hydrocarbons and to designing improved catalysts. This brief survey of the recent spectacular developments in environmental high resolution electron microscopy shows that new opportunities are being opened up in catalysis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
童琴  董亚梅  昆峰  何丹农 《化工进展》2019,38(z1):226-231
非均相催化臭氧氧化技术是一种高效的水污染控制技术。负载型稀土臭氧氧化催化剂因稀土元素独特的电子构型,展现出优异的催化性能,不仅具有良好的稳定性和较长的使用寿命,还可有效解决催化剂流失及出水金属离子超标问题,被认为是最有前景的非均相臭氧氧化催化剂。本文着重从负载型稀土臭氧氧化催化剂的制备、催化反应机理以及单稀土、稀土-过渡金属、双稀土-过渡金属氧化物负载型臭氧氧化催化剂在近几年的污水处理领域中的应用进展进行概述与总结。多稀土复合型非均相臭氧氧化催化剂的开发,以及对催化氧化过程的作用机理的深入研究,是未来非均相催化臭氧氧化技术在水处理中的重点研究方向。  相似文献   

16.
Au, Ag and Au–Ag catalysts on different supports of alumina, titania and ceria were studied for their catalytic activity of ethylene oxidation reactions. An addition of an appropriate amount of Au on Ag/Al2O3 catalyst was found to enhance the catalytic activity of the ethylene epoxidation reaction because Au acts as a diluting agent on the Ag surface creating new single silver sites which favor molecular oxygen adsorption. The Ag catalysts on both titania and ceria supports exhibited very poor catalytic activity toward the epoxidation reaction of ethylene, so pure Au catalysts on these two supports were investigated. The Au/TiO2 catalysts provided the highest selectivity of ethylene oxide with relatively low ethylene conversion whereas, the Au/CeO2 catalysts was shown to favor the total oxidation reaction over the epoxidation reaction at very low temperatures. In comparisons among the studied catalysts, the bimetallic Au–Ag/Al2O3 catalyst is the best candidate for the ethylene epoxidation. The catalytic activity of the gold catalysts was found to depend on the support material and catalyst preparation method which govern the Au particle size and the interaction between the Au particles and the support.  相似文献   

17.
Pd catalysts supported on TiO2, ZrO2, ZSM-5, MCM-41 and activated carbon were used in catalytic wet oxidation of hydrocarbons such as phenol, m-cresol and m-xylene. It was found that the Pd/TiO2 catalyst was highly effective in the wet oxidation of hydrocarbon. The activities of catalysts with various hydrocarbon species, catalyst support, oxidation state of catalyst performed in a 3-phase slurry reactor show that reaction on Pd surface is more favorable than that in aqueous phase and that the active site is oxidized Pd in catalytic wet air oxidation of hydrocarbons. Based on the experimental results, a plausible reaction mechanism of wet oxidation of hydrocarbons catalyzed over Pd/TiO2 catalyst was proposed. This catalyst is superior to other oxide catalysts because it suppressed the formation of hardly-degradable organic intermediates and polymer.  相似文献   

18.
The catalytic performance of a series of Pt/Al2O3 catalysts, modified with Cr, Mn, Fe, Co, Ni, Cu and Sn, has been tested for the preferential oxidation of CO in hydrogen. The promoters were deposited onto the surface of a 5 wt.% monometallic Pt/Al2O3 catalyst using a controlled surface approach, to give a nominal promoter:Pt surface atomic ratio of 1:2 (corresponding to typically 0.15–0.25 wt.% of the promoting metal). The aim of this approach was to selectively create the Pt-promoter oxide interfacial sites considered to be important for the non-competitive dual-site mechanism proposed for such promoted catalysts. In this mechanism the promoting oxide is believed to act as an active oxygen provider, providing oxygen for the oxidation of the CO on the Pt. The catalysts were characterised using TEM, EDX, ICP-AES and CO chemisorption and results suggest that the promoter was successfully deposited on to the Pt surface. Even at the low loadings of promoter used, significant enhancement was observed in the catalytic performance of the PROX reaction in a simulated reformate mixture, for the Fe- and Co-promoted catalysts in particular (and to a lesser extent the Mn, Sn, Cu- and Ni-promoted catalysts), highlighting the successful preparation of the Pt-promoting metal oxide interfacial sites. The Mn-promoted catalyst, however showed no enhancement in the absence of water suggesting that the form of the promoting metal oxide may be particularly important for promotion of Pt for the PROX reaction.  相似文献   

19.
The central issue of this review is the importance of selectivity in heterogeneous catalysis. The implications of our mechanistic studies on model systems to the interpretation of catalytic processes are discussed. In particular, it is our thesis that the optimization of catalytic selectivity may require a different approach than that needed to increase overall catalytic activity. This is so because a given intermediate in the reaction mechanism may be slow to form, but able to react by following more than one relatively fast pathway. In the case of hydrocarbon reforming, while activity is often controlled by alkane activation, selectivity is likely to depend on the regioselectivity of the subsequent dehydrogenation of the resulting alkyl surface intermediates. Similar arguments can be used to explain the selectivity between dehydrogenation and dehydration reactions on alcohols. Additional complications arise from the build up of carbonaceous deposits on the surface of the catalyst under reaction conditions. Surface-science studies have led to the conclusion that these deposits modify the properties of the exposed catalytic metal, opening up new channels for mild reactions but still allowing for the occurrence of the more demanding reactions involved in hydrocarbon reforming and oxidation processes. Lastly, catalyst modification can be introduced in a controlled fashion, as in the case of the bestowing of chirality to normal hydrogenation catalysts by the addition of small amounts of chiral cocatalysts to the reaction mixture. A brief survey of our recent investigation of these systems is provided.  相似文献   

20.
由于成本低、脱硫率高等优点,氧化脱硫可成为未来非加氢方法生产超低硫清洁燃料油的主要技术之一。综述了国内外一些氧化脱硫机理的现状,如用不同催化剂将含硫油品氧化成不同的中间体的催化氧化脱硫、过氧中间体与含硫化合物发生基元反应的催化氧化离子液体氧化脱硫、通过不同光敏剂发生反应的光化学氧化脱硫、以电化学接触含硫化合物电解脱硫的电化学氧化脱硫、以微生物或者微生物所含的酶为催化剂生物氧化脱硫等,并且指出目前机理研究尚有不足,有些反应机理并不明确,还有待深入研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号