首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the expression of nerve growth factor (NGF) in the rat striatum is the highest at 2 postnatal weeks (P2w), the action of NGF at that age has not been studied in detail. We examined the effects of several neurotrophic factors, including NGF, on striatal cholinergic neurons cultured from P2w rats. We also examined the effects of a cyclic AMP (cAMP) analog and high K(+)-evoked depolarization. NGF specifically promoted the survival of choline acetyltransferase (ChAT)-positive neurons, and consequently increased the ChAT activity per well, whereas it did not induce the ChAT activity per cholinergic neuron. NGF-responsiveness was the highest in striatal cultures from P2w rats, but it was almost lost in cultures from P4w rats. Brain-derived neurotrophic factor (BDNF), neurotrophin-4/5 (NT-4/5), and a cAMP analog had survival-promoting effects on striatal total neurons including cholinergic neurons. On the other hand, high K+ hardly promoted the survival of striatal cholinergic neurons in cultures from P2w rats, although it increased the viable number of total striatal neurons. High K+ did not increase the ChAT activity in any tested cultures from postnatal 3- to 28-day-old rats. These results demonstrated that NGF prevented the death of striatal cholinergic neurons in cultures from P2w rats, but not from P4w rats, and that high K+ could not rescue these deaths. We propose that cholinergic neurons in the striatum are programmed to die at P2w, and that this programmed cell death can be restored by neurotrophins, but not by depolarization.  相似文献   

2.
Choline acetyltransferase (ChAT) is a specific phenotypic marker of cholinergic neurons. Previous reports showed that different upstream regions of the ChAT gene are necessary for cell type-specific expression of reporter genes in cholinergic cell lines. The identity of the mouse ChAT promoter region controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo is not known. We characterized a promoter region of the mouse ChAT gene in transgenic mice, using beta-galactosidase (LacZ) as a reporter gene. A 3,402-bp segment from the 5'-untranslated region of the mouse ChAT gene (from -3,356 to +46, +1 being the translation initiation site) was sufficient to direct the expression of LacZ to selected neurons of the nervous system; however, it did not provide complete cholinergic specificity. A larger fragment (6,417 bp, from -6,371 to +46) of this region contains the requisite regulatory elements that restrict expression of the LacZ reporter gene only in cholinergic neurons of transgenic mice. This 6.4-kb DNA fragment encompasses 633 bp of the 5'-flanking region of the mouse vesicular acetylcholine transporter (VAChT), the entire open reading frame of the VAChT gene, contained within the first intron of the ChAT gene, and sequences upstream of the start coding sequences of the ChAT gene. This promoter will allow targeting of specific gene products to cholinergic neurons to evaluate the mechanisms of diseases characterized by dysfunction of cholinergic neurons and will be valuable in design strategies to correct those disorders.  相似文献   

3.
This study investigates the ultrastructure and central targets in the cochlear nucleus of axonal swellings of type II primary afferent neurons. Type II axons comprise only 5-10% of the axons of the auditory nerve of mammals, but they alone provide the afferent innervation of the outer hair cells. In this study, type II axons were labeled with horseradish peroxidase, and serial-section electron microscopy was used to examine their swellings in: (1) the granule-cell lamina at its boundary with posteroventral cochlear nucleus, (2) the rostral anteroventral cochlear nucleus, and (3) the auditory nerve root. Only some (18%) of the type II terminal and en-passant swellings formed synapses. The synapses were asymmetric and contained clear round synaptic vesicles, suggesting that they are excitatory. Type II synapses were compared to those from type I fibers providing the afferent innervation of the inner hair cells. Type II synapses tended to have slightly smaller and fewer synaptic vesicles, had a greater proportion of the membrane apposition accompanied by a postsynaptic density, and often had densities that were discontinuous or 'perforated'. In all cochlear nucleus regions examined, the postsynaptic targets of type II synapses had characteristics of dendrites; in most cases these dendrites could not be traced to their cell bodies of origin. Some evidence suggests, however, that targets may include granule cells, spherical cells, and other cells in the nerve root. These results suggest afferent information from outer hair cells reaches diverse regions and targets within the cochlear nucleus.  相似文献   

4.
Following axotomy most medial septal neurons in the adult rat brain have dramatically reduced numbers of choline acetyltransferase (ChAT) positive neurons. Since leukemia inhibitory factor (LIF) promotes cholinergic expression in several neuronal populations, the aim of this study was to determine if LIF would continue to support cholinergic expression in axotomized medial septal neurons. Mini-osmotic pumps were used to infuse saline or LIF into the lateral cerebral ventricle. Counts of ChAT and low-affinity nerve growth factor (p75NGFR) immunostained neurons indicated that LIF-treated animals retained ChAT expression in > 90% of axotomized neurons whereas in saline-infused animals this was < 30%. Also, LIF was equally effective in maintaining p75NGFR expression levels in axotomized medial septal neurons.  相似文献   

5.
These studies tested the hypothesis that survival-promoting effects of neurotrophins on basal forebrain cholinergic neurons are enhanced under stress. Septal neurons from embryonic day 14-15 rats exposed for 10-14 d to neurotrophin [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or neurotrophin-4 (NT-4), each at 100 ng/ml] showed a two- to threefold increase in choline acetyltransferase (ChAT) activity, with little evidence of synergistic interactions. Neurotrophins produced no significant increase in the survival of total or acetylcholinesterase (AChE)-positive neurons at moderate plating density (1200-1600 cells/mm2). However, with very low plating densities (2-28 cells/mm2) BDNF, NT-3, and NT-4 (but not NGF) increased total neuronal survival, and BDNF increased survival of AChE-positive neurons. NGF and BDNF enhanced ChAT activity and survival of cholinergic neurons after a 24 hr hypoglycemic stress, even when added 1 hr after stress onset. All four tested neurotrophins increased total neuronal survival after hypoglycemic stress. These results suggest that neurotrophins are important for preservation of central cholinergic function under stress conditions, with different neurotrophins protecting against different stresses. The stress-associated survival-promoting effects of neurotrophins were not limited to the cholinergic subpopulation.  相似文献   

6.
Traumatic brain injury (TBI) results in chronic derangements in central cholinergic neurotransmission that may contribute to posttraumatic memory deficits. Intraventricular cannula (IVC) nerve growth factor (NGF) infusion can reduce axotomy-induced spatial memory deficits and morphologic changes observed in medial septal cholinergic neurons immunostained for choline acetyltransferase (ChAT). We examined the efficacy of NGF to (1) ameliorate reduced posttraumatic spatial memory performance, (2) release of hippocampal acetylcholine (ACh), and (3) ChAT immunoreactivity in the rat medial septum. Rats (n = 36) were trained prior to TBI on the functional tasks and retested on Days 1-5 (motor) and on Day 7 (memory retention). Immediately following injury, an IVC and osmotic pump were implanted, and NGF or vehicle was infused for 7 days. While there were no differences in motor performance, the NGF-treated group had significantly better spatial memory retention (P < 0.05) than the vehicle-treated group. The IVC cannula was then removed on Day 7, and a microdialysis probe was placed into the dorsal hippocampus. After a 22-h equilibration period, samples were collected prior to and after administration of scopolamine (1 mg/kg), which evoked ACh release by blocking autoreceptors. The posttraumatic reduction in scopolamine-evoked ACh release was completely reversed with NGF. Injury produced a bilateral reduction in the number and cross-sectional area of ChAT immunopositive medial septal neurons that was reversed by NGF treatment. These data suggest that cognitive but not motor deficits following TBI are, in part, mediated by chronic deficits in cholinergic systems that can be modulated by neurotrophic factors such as NGF.  相似文献   

7.
There is increasing interest in localizing nerves in the intestine, especially specific populations of nerves. At present, the usual histochemical marker for cholinergic nerves in tissue sections is acetylcholinesterase activity. However, such techniques are applicable only to frozen sections and have uncertain specificity. Choline acetyltransferase (ChAT) is also present in cholinergic nerves, and we therefore aimed to establish a paraffin section immunocytochemical technique using an anti-ChAT antibody. Monoclonal anti-choline acetyltransferase (1.B3.9B3) and a biotin-streptavidin detection system were used to study the distribution of ChAT immunoreactivity (ChAT IR) in paraffin-embedded normal and diseased gastrointestinal tracts from both rats and humans. Optimal staining was seen after 6-24 hr of fixation in neutral buffered formalin and overnight incubation in 1 microgram/ml of 1.B3.9B3, with a similar distribution to that seen in frozen sections. In the rat diaphragm (used as a positive control), axons and motor endplates were ChAT IR. Proportions of ganglion cells and nerve fibers in the intramural plexi of both human and rat gastrointestinal tracts were also ChAT IR, as well as extrinsic nerve bundles in aganglionic segments of Hirschsprung's disease. Mucosal cholinergic nerves, however, were not visualized. In addition, non-neuronal cells such as endothelium, epithelium, and inflammatory cells were ChAT IR. We were able to localize ChAT to nerves in formalin-fixed, paraffin-embedded sections. The presence of ChAT IR in non-neuronal cells indicates that this method should be used in conjunction with other antibodies. Nevertheless, it proves to be a useful technique for studying cholinergic neuronal distinction in normal tissues and pathological disorders.  相似文献   

8.
Choline acetyltransferase (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4 kb of 5' flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig's organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig's nerve and a neuron close to the insertion site of the optic stalk. This neuron's axon ran in parallel with Bolwig's nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig's organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.  相似文献   

9.
Choline acetyltransferase (ChAT), the enzyme which catalyses the biosynthesis of the neurotransmitter acetylcholine, exists in a soluble and membrane-bound form in cholinergic nerve terminals of different animal species. This study was performed on the enzyme present in Drosophila central nervous system. We show that the two forms of the enzyme have the same apparent molecular weight (75 kDa) when analysed by immunoblotting using an antibody we raised against the recombinant enzyme. According to different authors, membrane-bound enzyme might be associated with synaptic vesicles or plasma membrane. Subfractionation of Drosophila head homogenates in linear glycerol gradients showed that ChAT does not associate with synaptic vesicles. Analysis of ChAT activity and immunoreactivity showed that two peaks of ChAT were produced. One peak was present in fractions containing soluble components and the other was associated with rapidly sedimenting membranes containing plasma membranes. ChAT in the first peak was mainly hydrophilic. A large proportion of ChAT associated with rapidly sedimenting membranes was amphiphilic. Further fractionation of these membranes by flotation in sucrose gradients showed that membrane-associated ChAT sedimented in fractions containing plasma membrane marker. Membrane-bound ChAT was neither solubilized nor converted to hydrophilic enzyme after membrane treatment with 1 M hydroxylamine, suggesting that the enzyme is not palmitoylated and therefore not anchored to membrane through thioester-linked long chain fatty acid. Partial solubilization of ChAT present on membranes with urea and carbonate suggests that this form of ChAT is a peripheral membrane protein. Carbonate solubilization of membrane-bound ChAT converted the enzyme from hydrophobic to hydrophilic protein.  相似文献   

10.
Expression of c-fos mRNA was studied in the adult rat brain following cochlear ablations by using in situ hybridization. In normal animals, expression was produced by acoustic stimulation and was found to be tonotopically distributed in many auditory nuclei. Following unilateral cochlear ablation, acoustically driven expression was eliminated or decreased in areas normally activated by the ablated ear, e.g., the ipsilateral dorsal and ventral cochlear nuclei, dorsal periolivary nuclei, and lateral nucleus of the trapezoid body and the contralateral medial and ventral nuclei of the trapezoid body, lateral lemniscal nuclei, and inferior colliculus. These deficits did not recover, even after long survivals up to 6 months. Results also indicated that neurons in the dorsal cochlear nucleus could be activated by contralateral stimulation in the absence of ipsilateral cochlear input and that the influence of the contralateral ear was tonotopically organized. Results also indicated that c-fos expression rose rapidly and persisted for up to 6 months in neurons in the rostral part of the contralateral medial nucleus of the trapezoid body following a cochlear ablation, even in the absence of acoustic stimulation. This response may reflect a release of constitutive excitatory inputs normally suppressed by missing afferent input or changes in homeostatic gene expression related to sensory deprivation. Instances of transient, surgery-dependent increases in c-fos mRNA expression in the absence of acoustic stimulation were observed in the superficial dorsal cochlear nucleus and the cochlear nerve root on the ablated side.  相似文献   

11.
Sympathetic ganglia are composed of noradrenergic and cholinergic neurons. The differentiation of cholinergic sympathetic neurons is characterized by the expression of choline acetyltransferase (ChAT) and vasoactive intestinal peptide (VIP), induced in vitro by a subfamily of cytokines, including LIF, CNTF, GPA, OSM and cardiotrophin-1 (CT-1). To interfere with the function of these neuropoietic cytokines in vivo, antisense RNA for gp130, the common signal-transducing receptor subunit for neuropoietic cytokines, was expressed in chick sympathetic neurons, using retroviral vectors. A strong reduction in the number of VIP-expressing cells, but not of cells expressing ChAT or the adrenergic marker tyrosine hydroxylase (TH), was observed. These results reveal a physiological role of neuropoietic cytokines for the control of VIP expression during the development of cholinergic sympathetic neurons.  相似文献   

12.
The concept that galanin (GAL) is cosecreted with acetylcholine (ACh) into the ventral hippocampus is a major component of the current model delineating GAL regulation of the cholinergic memory pathways in the rat. Although GAL-immunoreactivity coexists in 50-70% of cholinergic neurons in the basal forebrain (BF) of colchicine-treated rats, the actual coexistence of these neurotransmitters in the basal state may be lower, because colchicine treatment was recently shown to both induce GAL gene expression and inhibit choline acetyltransferase (ChAT) gene expression in this brain region. We have used single and double in situ hybridization histochemistry to examine the distribution and coexistence of GAL and ChAT mRNAs in the BF of male and female rats. Compared with other forebrain regions, few GAL mRNA-expressing neurons are present within the cholinergic fields of the BF. The greatest number of GAL mRNA-expressing cells in this region are located within the nucleus of the horizontal limb of the diagonal band; but, even in this region, they represent only a small percentage (<20%) of ChAT mRNA-expressing cells. Our results indicate that few cholinergic neurons in the rat BF coexpress GAL mRNA and suggest that, in the basal state, GAL is not widely cosecreted with ACh into hippocampal memory centers.  相似文献   

13.
Although cochlear implants now regularly achieve gratifying results, traditional intrascalar implants have certain limitations. Extraluminal implants may offset some of these problems by accessing neurons subserving a wider tonotopic range, avoiding intracochlear insertion trauma, and offering alternatives when cochlear obliteration is present. We have investigated the utility of a lateral cochlear wall implant in a normal-hearing cat model with implants at the middle and basal turns, and found successful activation of the auditory nerve at thresholds of 28.1 and 40.6 microA, respectively. No adventitial stimulation of the facial nerve was noted within the dynamic range. Maximum responsiveness was observed with implants of the middle turn of the cochlea, an area that is not reliably approached with current intrascalar implants. These observations support and extend prior observations of the feasibility of extraluminal stimulation of the auditory nerve.  相似文献   

14.
Evidence for the importance of the basal forebrain cholinergic system in the maintenance of cognitive function has stimulated efforts to identify trophic mechanisms that protect this cell population from atrophy and dysfunction associated with aging and disease. Acidic fibroblast growth factor (aFGF) has been reported to support cholinergic neuronal survival and has been localized in basal forebrain with the use of immunohistochemical techniques. Although these data indicate that aFGF is present in regions containing cholinergic cell bodies, the actual site of synthesis of this factor has yet to be determined. In the present study, in situ hybridization techniques were used to evaluate the distribution and possible colocalization of mRNAs for aFGF and the cholinergic neuron marker choline acetyltransferase (ChAT) in basal forebrain and striatum. In single-labeling preparations, aFGF mRNA-containing neurons were found to be codistributed with ChAT mRNA+ cells throughout all fields of basal forebrain, including the medial septum/diagonal band complex and striatum. By using a double-labeling (colormetric and isotopic) technique, high levels of colocalization (over 85%) of aFGF and ChAT mRNAs were observed in the medial septum, the diagonal bands of Broca, the magnocellular preoptic area, and the nucleus basalis of Meynert. The degree of colocalization was lower in the striatum, with 64% of the cholinergic cells in the caudate and 33% in the ventral striatum and olfactory tubercle labeled by the aFGF cRNA. These data demonstrate substantial regionally specific patterns of colocalization and support the hypothesis that, via an autocrine mechanism, aFGF provides local trophic support for cholinergic neurons in the basal forebrain and the striatum.  相似文献   

15.
16.
Somatic motor neurons begin to express the transmitter synthesizing enzyme, choline acetyltransferase (ChAT) and the low-affinity nerve growth factor receptor (NGFR) during embryonic development. However, as motor neurons mature in postnatal life, they lose immunoreactivity for NGFR and acquire a motor neuron-specific epitope that is recognized by the monoclonal antibody, MO-1. The present study was undertaken to examine the effect of nerve injury in adult rats on these three developmentally regulated markers in two populations of somatic motor neurons. Unilateral transection, ligation, or crushing of the sciatic nerve resulted in a loss of MO-1 binding and a concomitant rise in immunoreactivity for NGFR within axotomized motor neurons in lumbar levels of the spinal cord. These changes, detectable within 5 days following nerve injury, are reversed with reinnervation, but persist if reinnervation is prevented by chronic axotomy. Thus, regulation of the expression of NGFR and the MO-1 epitope appears to be critically dependent upon interactions between motor neurons and target muscles. These observations are also consistent with the idea that during regeneration, neurons may revert to a developmentally immature state; in motor neurons, this state is characterized by the presence of NGFRs and the absence of the MO-1 epitope. Transection of the hypoglossal nerve, a purely motor nerve, resulted in a similar loss of MO-1 binding and a selective rise in NGFR immunoreactivity in neurons within the ipsilateral hypoglossal motor nucleus. In addition, immunoreactivity for ChAT was also lost in axotomized hypoglossal motor neurons. In contrast, injury to the sciatic nerve, which bears both sensory and motor axons, did not result in any detectable change in ChAT immunoreactivity in spinal motor neurons.  相似文献   

17.
The present study was designed to investigate the type and extent of degeneration occurring in the human central auditory system subsequent to profound hearing loss. The authors have examined the size of one population of neurons in the ventral cochlear nucleus in seven subjects with profound hearing loss (audiometric responses poorer than 90-100 dB HL). Six normal subjects, ages 35-78, were used as controls. Cell size in the hearing-impaired subjects ranged from normal to reduced by more than 50 percent. Two factors appear to contribute to the variability in cell size reduction. The correlation coefficient (Spearman rs) of cell size with duration of profound deafness was -0.48, indicating a moderate tendency for neurons to become smaller with longer periods of deafness. The correlation coefficient of cell size with number of surviving cochlear ganglion cells was 0.73, indicating a stronger tendency for neurons to be larger with greater eighth nerve innervation of the cochlear nucleus. Two cases of Scheibe degeneration showed the most severe degenerative change in the central auditory system.  相似文献   

18.
Choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) are both encoded by the cholinergic gene locus from which, in the rat, five different species of ChAT mRNA and three different species of VAChT mRNA are produced. So far, discrimination between mRNA subtypes has been possible only in CNS homogenates or in cell cultures. In this study, cardiac neurons were microdissected from frozen sections of rat heart using a u.v. laser and harvested using a micromanipulator. RT-PCR demonstrated the expression of the non-coding R-exon and splicing to R1-type mRNA in the majority of cardiac neurons. The technique presented here is the first to allow subtype analysis of cholinergic locus mRNA species in neurons in situ.  相似文献   

19.
This study characterized the influence of full-term gestational ethanol exposure on choline acetyltransferase (ChAT)-immunoreactive neurons that project to the hippocampus, within the medial septal (MS) nucleus and the vertical limb of the diagonal band of Broca (DBv). On gestation days 1-22, pregnant dams were fed either a vitamin fortified ethanol-containing liquid diet, pair fed a calorically equivalent sucrose-containing diet, or given rat chow ad libitum. In a previous study, we found that chronic prenatal exposure to ethanol, in this manner, resulted in a significant decline in the ontogenetic upregulation of ChAT activity in the septal area during the second postnatal week, but was followed by recovery to control levels by adulthood. On postnatal days 14 and 60 (P14 and P60) the brains were prepared for ChAT immunocytochemistry. Ethanol exposure had little influence on the number of ChAT-positive neurons in the MS nucleus of animals at either age. Ethanol exposure had no effect on neuronal size or ChAT staining intensity of MS or DBv neurons when compared to chow-fed offspring. Although age-related increases in cholinergic neuronal numbers and decreases in neuronal size were observed between juvenile and adult animals, prenatal ethanol exposure did not appear to influence these postnatal changes in the population as a whole. Overall, these findings suggest that the anatomical maturation of septal cholinergic neurons may be relatively insensitive to prenatal ethanol exposure under conditions of a vitamin-rich dietary supplementation, while biochemical development within this region may be more susceptible to early ethanol influences.  相似文献   

20.
Cholinergic properties in chick sympathetic neurons are detectable early during development of paravertebral ganglia and mature after target contact. The cholinergic marker choline acetyltransferase (ChAT) is first detectable at embryonic day 6 and its expression partly overlaps with that of the noradrenergic marker tyrosine hydroxylase (TH). At late embryonic stages, when sympathetic neurons have established target contact, ganglia consist of two major neuronal populations, TH-positive noradrenergic neurons and cholinergic neurons that at this stage express vasoactive intestinal peptide (VIP) in addition to ChAT. The maturation of sympathetic neurons is paralleled by changes in their response to the neurokine ciliary neurotrophic factor (CNTF). These findings suggest that expression of neurotransmitter properties is controlled differentially before and during target innervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号