共查询到20条相似文献,搜索用时 15 毫秒
1.
A two dimensional axisymmetric model was developed to predict the heat flux in a steelmaking ladle during the teeming process. The model predicts dynamically the flow fields in both liquid phase and gas phase along with the movement of the liquid upper surface. The model also predicts the temperature distributions in the liquid metal, gas phase and all layers in the ladle wall. Industrial measurements using infrared radiation camera inside the ladle after teeming and at the wall outside the ladle during the whole process were carried out. The model predictions were found to be in agreement with the measured data. It was found that the heat transfer to the surrounding atmosphere and the conductivity of the highly insulating layer were the most important factors for the heat loss. The decrease of the thickness of the working lining was found to have limited effect on the total heat flux. 相似文献
2.
本文针对Cz法晶体生长特点,通过数值模拟的方法,对Cz法生长砷化镓单晶时从引晶、放肩、等径至收尾这一完整工艺过程中晶体的温度场、熔体的温度场和速度场进行了计算,从中分析籽晶和坩埚的转向、转速等因素对流动和传热的影响,并与实际的砷化镓单晶生长过程进行比较,从比较结果看,二者基本吻合。 相似文献
3.
The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented. 相似文献
4.
Mathematical modelling was used to study the effect of a changed aspect ratio of a continuous casting mould on the resulting flow field in the upper part of the mould when using a swirl flow in the nozzle. Model predictions were initially compared to physical modelling data. More specifically, the predicted axial velocities were found to differ only at the most ~3 mm/s from the measured data. Thus, the model was concluded to be sound. By changing the aspect ratio of a billet mould from 1 to 3 systematically, a numerical analysis of the mould region of a billet continuous caster was performed with a novel injection concept using swirling flow in the immersion nozzle in order to control the heat and mass transfer in the continuous casting mould. The predictions showed that the aspect ratio of the mould has a large influence on the flow field in the upper part of the mould. The meniscus temperature was found to increase with an increasing aspect ratio from 1 to 2, but the maximum temperature was found to decrease when the aspect ratio was increased above 2. 相似文献
5.
A theoretical and experimental study of heat flow during the welding of pipes was carried out. The theoretical part of the
study involves the development of two finite difference computer models: one for describing steady state, 3-dimensional heat
flow during seam welding, the other for describing unsteady state, 3-dimensional heat flow during girth welding. The experimental
part of the study, on the other hand, includes: measurement of the thermal response of the pipe with a high speed data acquisition
system, determination of the arc efficiency with a calorimeter, and examination of the fusion boundary of the resultant weld.
The experimental results were compared with the calculated ones, and the agreement was excellent in the case of seam welding
and reasonably good in the case of girth welding. Both the computer models and experiments confirmed that, under a constant
heat input and welding speed, the size of the fusion zone remains unchanged in seam welding but continues to increase in girth
welding of pipes of small diameters. It is expected that the unsteady state model developed can be used to provide optimum
conditions for girth welding, so that uniform weld beads can be obtained and weld defects such as lack of fusion and sagging
can be avoided. 相似文献
6.
《Canadian Metallurgical Quarterly》2013,52(3-4):265-273
AbstractHeat and momentum transfer in a submerged electric smelting furnace were investigated in a physical model, using oil and an aqueous calcium chloride solution to simulate the slag and matte phases, respectively. Gas evolution at the electrode was simulated by the injection of gas through the electrode in the model. A mathematical model for fluid flow and heat transfer in the model was also developed. The measured temperature distributions near the oil/solution interface could only be reproduced in the mathematical model by the imposition of a no-slip boundary condition at the interface. This condition impedes the transfer of heat and momentum into the lower phase; the implications for smelting are discussed. © 1998 Canadian Institute of Mining and Metallurgy. Published by Elsevier Science Ltd. All rights reserved. Résumé On a étudié avec un modèle physique, le transfert de chaleur et de movement dans un four à fusion électrique submergé, en utilisant de l'huile et une solution aqueuse de chlorure de calcium pour simuler les phases de laitier et de matte, respectivement. Dans le modèle, l'évolution de gaz à l'électrode était simulée par l'injection de gaz à travers l'électrode. On a aussi développe un modèle mathematique de l'écoulement de fluide et de transfert de chaleur dans le modèle (physique). Dans le modele mathématique, on pouvait reproduire les distributions de temperature mesurée pres de l'interface huile/solution seulement si on imposait une condition limite de non-glissant à l'interface. Cette condition empeche le transfert de chaleur et de movement vers la phase inferieure; on discute des implications pour le traitement en fonderie. © 1998 Canadian Institute of Mining and Metallurgy. Published by Elsevier Science Ltd. All rights reserved. 相似文献
7.
The physical models of the outer and inner half coil jackets were simplified to two types of coiled ducts.The mathematic models of incompressible fluid at the condition of laminar flow and heat transfer in the two types of jackets for cooling process reactor were set up and solved by the semi-implicit method for pressure linked equations consistent (SIMPLEC) algorithm based on a control volume method. The flow and temperature fields were given and the effects of Dean and Prandtl numbers on flow and heat transfer were studied. The results show that flow in the inner half coil jacket is found to exhibit transition of secondary flow pattern from two vortices to fourvortices when the Dean number increases, but that in the outer half coil jacket is not found. The critical Dean number is about 96. The inner half coil jacket has stronger heat transfer ability than the outer half coil jacket and this superiority is more evident with larger Prandtl number. However, as the Dean number is greater than 105, the flow resistance enhances more severely in the inner jacket than the outer jacket. For both jackets, the centers of the heated wall are the poorest for heat transfer. 相似文献
8.
9.
The current work examines the heat-and-mass transfer process in the laser multilayered cladding of H13 tool steel powder by
numerical modeling and experimental validation. A multiphase transient model is developed to investigate the evolution of
the temperature field and flow velocity of the liquid phase in the molten pool. The solid region of the substrate and solidified
clad, the liquid region of the melted clad material, and the gas region of the surrounding air are included. In this model,
a level-set method is used to track the free surface motion of the molten pool with the powder material feeding and scanning
of the laser beam. An enthalpy–porosity approach is applied to deal with the solidification and melting that occurs in the
cladding process. Moreover, the laser heat input and heat losses from the forced convection and heat radiation that occurs
on the top surface of the deposited layer are incorporated into the source term of the governing equations. The effects of
the laser power, scanning speed, and powder-feed rate on the dilution and height of the multilayered clad are investigated
based on the numerical model and experimental measurements. The results show that an increase of the laser power and powder
feed rate, or a reduction of the scanning speed, can increase the clad height and directly influence the remelted depth of
each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements. 相似文献
10.
11.
arc has been developed and used to predict heat transfer from the arc to the molten bath in ferrosilicon AC submerged-arc furnace. In this model the time-dependent conservation equations for mass, momentum and energy in the specified domain of plasma zone have been solved numerically coupled with the Maxwell and Laplace equations for magnetic filed and electric potential respectively. A control volume based finite difference method was used to solve the governing equations in cylindrical coordinates. The reliability of the developed model was tested by comparison with the data available in the literature. The present model showed a better consistency with the data given in the literature because of solving the Maxwell and Laplace equations simultaneously for calculation of current density. Parametric studies were carried out to evaluate the effect of electrical current and arc length on flow field and temperature distribution within the arc. According to computed results, a lower power input lead to the higher arc efficiency. 相似文献
12.
薄板坯连铸结晶器内流动传热行为的研究 总被引:2,自引:0,他引:2
基于珠钢CSP薄板坯连铸机设备工艺条件和所采用扁平浸入式水口结构,结合铜板测温导出的热流密度分布进行了漏斗形结晶器内钢水流动、自由液面以及传热凝固等冶金现象的综合描述和数值分析.结晶器熔池中以两个上旋涡为主的钢水循环流动局限在漏斗形结晶器内,上旋涡流股冲击和离开熔池液面分别对液面起伏波动有所贡献,弯月面下距窄边100 mm范围内有二次涡形成.除水口下方两侧存在两个具有明显过热的高温区外,熔池中绝大部分钢水的温度在液相线附近保持恒定,铸坯表面温度分布和坯壳发育过程均反映出水口高温射流的影响,铸坯表面最高温区位于熔池液面下方靠近结晶器窄边的地方. 相似文献
13.
Fluid Flow and Heat Transfer in a Continuous Casting Tundish With the Channel Type Induction Heating
A coupled mathematical model was developed to describe the flow field,temperature distribution of molten steel in the tundish with the channel type induction heating.The molten steel motion was dominated under the combined effect of the thermal buoyancy and the electro-magnetic forces(EMFs)due to the channel type induction heating.The results indicate that the thermal loss of molten steel in the tundish can be compensated effectively by the channel type induction heating.In addition,the molten steel would flow upward under the thermal buoyancy which can reduce the erosion of refractory.Moreover,the upward flow would increase the residence time of the molten steel in the tundish which provide more opportunities for the inclusion to reach the top surface of the tundish. 相似文献
14.
通过计算得出在浇注过程中连铸中间包包壁瞬态热量损失作为边界条件的基础上,建立了连铸中间包内钢液流动与传热耦合数学模型,对连浇过程中中间包内非稳态的温度场和流场进行了数值模拟,考察了中间包连浇5个包次过程中钢液热量损失、温度分布以及流场情况,为现场操作和工艺优化提供依据和指导。 相似文献
15.
ZHU Miao-yong WANG Jun ZHANG Ying 《钢铁研究学报(英文版)》2005,12(6):14-19
SymbolList Ab,An———Surfaceareaofbroadfaceandnarrowfaceof moldrespectively,m2;Cp———Effectiveheatcapacity,J·kg-1·K-1;Cp,s———Heatcapacityofsolidphase,J·kg-1·K-1;Cp,l———Heatcapacityofliquidphase,J·kg-1·K-1;Cw———Waterheatcapacity,J·kg-1· 相似文献
16.
17.
18.
基于边界条件替换方法建立了高炉冷却壁本体和捣打料与炉气之间的换热系数计算模型。用试验测量冷却壁近热面温度来推算冷却壁热面温度,与冷却壁温度场计算模型结合,确定了炉气温度在500~1 248 ℃范围内,高炉冷却壁与炉气之间的换热系数。结果表明,本模型的计算值与前苏联学者的试验结果吻合。 相似文献
19.
Lifeng Zhang 《国际钢铁研究》2005,76(11):784-796
Inclusions in the steel in a four‐strand continuous casting tundish, billet and wire products are firstly investigated with industrial trials, and the fraction of inclusions removed in terms of total oxygen in the tundish is measured. Then the 3‐dimenional fluid flow, heat transfer and inclusion motion in the tundish are numerically simulated. The κ‐? two‐equation model is used to model turbulence. Inclusion motion and trajectories are calculated by considering drag force and buoyancy force, coupling the effect of turbulent fluctuation (Random Walk Model). The effect of strands‐blocking on the fluid flow, heat transfer and inclusion removal is studied. A new design of tundish is proposed focusing on removing more inclusions from the molten steel. 相似文献