首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site-directed mutagenesis has proved an effective experimental technique to investigate catalytic mechanisms and to determine relations between enzyme structure and function. This article invokes an analytical model based on evolution by mutation and natural selection-Nature's analogue of site-directed mutagenesis-to derive a set of general rules relating enzyme structure and activity. The catalysts are described in terms of the structural parameters, rigidity and flexibility, and the functional variables, reaction rate and substrate specificity. The evolutionary model predicts the following structure-activity relations: (a) rigid enzyme-flexible substrate: large variation in reaction rates, broad substrate specificity; (b) rigid enzyme-rigid substrate: diffusion controlled rates, absolute specificity; (c) flexible enzyme-rigid substrate: intermediate reaction rates, group specificity; (d) flexible enzyme-flexible substrate: slow rates, absolute specificity. Spectroscopic methods and X-ray crystallography now yield important characteristics of enzyme-substrate complexes such as molecular flexibility. The evolutionary analysis we have exploited provides general principles for inferring catalytic activity from structural studies of enzyme-substrate complexes.  相似文献   

2.
Two-dimensional (2D) double-quantum-filtered correlation spectroscopy (DQF-COSY), total correlation spectroscopy (TOCSY), nuclear Overhauser effect spectroscopy (NOESY), and rotating-frame NOESY (ROESY) spectra were used to assign essentially all the protons in a 1:1 complex of Lactobacillus casei dihydrofolate reductase formed with an analogue of the antibacterial drug brodimoprim [2,4-diamino-5-(3',5'-dimethoxy-4'-bromobenzyl)pyrimidine]. The analogue has a 4,6-dicarboxylic acid side chain substituted on the 3'-O position designed to interact with the Arg 57 and His 28 residues in L. casei dihydrofolate reductase; it binds a factor of 10(3) more tightly to the enzyme than does the parent compound. Thirty-eight intermolecular and 11 intramolecular NOEs were measured involving the bound brodimoprim-4,6-dicarboxylic acid analogue. These provided the distance constraints used in conjunction with an energy minimization and simulated annealing protocol (using Discover from Biosym Ltd.) to dock the brodimoprim analogue into dihydrofolate reductase. In calculations where side chains and backbone fragments for binding-site residues were allowed flexibility, 90% of the 40 calculated structures had reasonable covalent geometry and none of them had NOE distance violations of greater than 0.36 A. The conformations of the aromatic rings in the bound ligand were well-defined in all the structures, with torsion angles tau 1 = -153 degrees +/- 4 degrees (C4-C5-C7-C1') and tau 2 = 53 degrees +/- 4 degrees (C5-C7-C1'-C2'): the aromatic rings of the ligand occupied essentially the same space in all the calculated structures (root mean square deviation value 1.83 A). Inclusion of the electrostatic interactions into the energy minimizations indicated that structures in which the 4,6-dicarboxylate group of the ligand interacts with the side chains of Arg 57 and His 28 are of low energy. Significant differences in side-chain and backbone conformations were detected between binding-site residues in the enzyme complexes with the brodimorpim analogue and methotrexate.  相似文献   

3.
Understanding the thermodynamics of drug binding to DNA is of both practical and fundamental interest. The practical interest lies in the contribution that thermodynamics can make to the rational design process for the development of new DNA targeted drugs. Thermodynamics offer key insights into the molecular forces that drive complex formation that cannot be obtained by structural or computational studies alone. The fundamental interest in these interactions lies in what they can reveal about the general problems of parsing and predicting ligand binding free energies. For these problems, drug-DNA interactions offer several distinct advantages, among them being that the structures of many drug-DNA complexes are known at high resolution and that such structures reveal that in many cases the drug acts as a rigid body, with little conformational change upon binding. Complete thermodynamic profiles (delta G, delta H, delta S, delta Cp) for numerous drug-DNA interactions have been obtained, with the help of high-sensitivity microcalorimetry. The purpose of this article is to offer a perspective on the interpretation of these thermodynamics parameters, and in particular how they might be correlated with known structural features. Obligatory conformational changes in the DNA to accommodate intercalators and the loss of translational and rotational freedom upon complex formation both present unfavorable free energy barriers for binding. Such barriers must be overcome by favorable free energy contributions from the hydrophobic transfer of ligand from solution into the binding site, polyelectrolyte contributions from coupled ion release, and molecular interactions (hydrogen and ionic bonds, van der Waals interactions) that form within the binding site. Theoretical and semiempirical tools that allow estimates of these contributions to be made will be discussed, and their use in dissecting experimental data illustrated. This process, even at the current level of approximation, can shed considerable light on the drug-DNA binding process.  相似文献   

4.
BACKGROUND: Mononuclear non-heme iron centers are found in the active sites of a variety of enzymes that require molecular oxygen for catalysis. The mononuclear non-heme iron is believed to be the active site for catalysis, and is presumed to bind and activate molecular oxygen. The mechanism of this reaction is not understood. Phthalate dioxygenase is one such enzyme. Because it also contains a second iron site, the Rieske site, it is difficult to obtain information on the structure of the active site. We therefore used magnetic circular dichroism (MCD) spectroscopy to probe the mononuclear, non-heme Fe2+ site in this biodegradative enzyme. RESULTS: The MCD spectrum of the resting enzyme shows features indicative of one six-coordinate Fe2+ site; substrate binding converts the site to two different five-coordinate species, opening up a coordination position for O2 binding. MCD spectra of the corresponding apoenzyme have been subtracted to account for temperature-independent contributions from the Rieske site. Azide binds both to the resting enzyme to produce a new six-coordinate species, showing that one of the ferrous ligands is exchangeable, and also to the enzyme-substrate complex to form a ternary species. The low azide binding constant for the substrate-enzyme species relative to the resting enzyme indicates steric interaction and close proximity between exogenous ligand and the substrate. CONCLUSIONS: We have been able to provide some detailed structural insight into exogenous ligand and substrate binding to the non-heme Fe2+ site, even in the presence of the enzyme's [2Fe-2S] Rieske center. Further mechanistic studies are now required to maximize the molecular-level detail available from these spectroscopic studies.  相似文献   

5.
The methyltransferase of the EcoK type I restriction/modification system is trimeric, M2S1, where the S subunit determines the sequence specificity of the enzyme. The methyltransferase has a strong preference for hemimethylated substrate DNA and, therefore, we have investigated the effect of the methylation state of DNA on binding by the enzyme, together with the effects on binding of the cofactor S-adenosyl-L-methionine. Our results indicate that the methyltransferase has two non-interacting S-adenosyl-L-methionine binding sites, each with a dissociation constant of 3.60 (+/- 0.42) microM determined by equilibrium dialysis, or 2.21 (+/- 0.29) microM determined by the displacement of a fluorescent probe. Ultraviolet light-induced crosslinking showed that S-adenosyl-L-methionine binds strongly only to the modification (M) subunits. Changes in the sedimentation velocity of the methyltransferase imply a protein conformational change due to S-adenosyl-L-methionine binding. Gel retardation results show that the binding of S-adenosyl-L-methionine to the methyltransferase enhances binding to both specific and non-specific DNAs, but the enhancement is greater for the specific DNA. Differences in binding affinities contribute to the recognition of the specific nucleotide sequence AAC(N)6GTGC by the methyltransferase in preference to a non-specific sequence. In contrast, although the complexes of unmodified and hemimethylated DNAs with the methyltransferase have different mobilities in non-denaturing gels, there appears to be no contribution of binding affinity to the distinction between these two substrates. Therefore, the preference for a hemimethylated substrate must be due to a difference in catalysis.  相似文献   

6.
The steady-state cleavage of catechols by 2,3-dihydroxybiphenyl 1, 2-dioxygenase (DHBD), the extradiol dioxygenase of the biphenyl biodegradation pathway, was investigated using a highly active, anaerobically purified preparation of enzyme. The kinetic data obtained using 2,3-dihydroxybiphenyl (DHB) fit a compulsory order ternary complex mechanism in which substrate inhibition occurs. The Km for dioxygen was 1280 +/- 70 microM, which is at least 2 orders of magnitude higher than that reported for catechol 2,3-dioxygenases. Km and Kd for DHB were 22 +/- 2 and 8 +/- 1 microM, respectively. DHBD was subject to reversible substrate inhibition and mechanism-based inactivation. In air-saturated buffer, the partition ratios of catecholic substrates substituted at C-3 were inversely related to their apparent specificity constants. Small organic molecules that stabilized DHBD most effectively also inhibited the cleavage reaction most strongly. The steady-state kinetic data and crystallographic results suggest that the stabilization and inhibition are due to specific interactions between the organic molecule and the active site of the enzyme. t-Butanol stabilized the enzyme and inhibited the cleavage of DHB in a mixed fashion, consistent with the distinct binding sites occupied by t-butanol in the crystal structures of the substrate-free form of the enzyme and the enzyme-DHB complex. In contrast, crystal structures of complexes with catechol and 3-methylcatechol revealed relationships between the binding of these smaller substrates and t-butanol that are consistent with the observed competitive inhibition.  相似文献   

7.
Tetrahydrodipicolinate (THDP) N-succinyltransferase catalyzes the conversion of tetrahydrodipicolinate and succinyl-CoA to L-2-(succinylamino)-6-oxopimelate and CoA. This reaction represents the committed step of the succinylase branch of the diaminopimelate/L-lysine biosynthetic pathway by which many bacteria synthesize meso-diaminopimelate, a component of peptidoglycan, and L-lysine from L-aspartate. The crystal structures of THDP succinyltransferase in complex with the substrate/cofactor pairs L-2-aminopimelate/coenzyme A and L-2-amino-6-oxopimelate/coenzyme A have been determined and refined to 2.0 A resolution. The active site of the enzyme is a long narrow groove located at the interface between two left-handed parallel beta-helix (LbetaH) structural domains of the trimeric enzyme. On binding the amino acid acceptor and cofactor, this groove is covered by residues from the C-terminus of one subunit and a flexible loop excluded from the LbetaH domain of an adjacent subunit to form a tunnel. This conformational change is directly related to interactions between the enzyme and the bound amino acid substrate and cofactor and serves to shield the ligands from bulk solvent and to orient the nucleophilic amino group of the amino acid acceptor toward the mercaptoethylamine group of the cofactor.  相似文献   

8.
The NADH absorbance spectrum of nicotinoprotein (NADH-containing) alcohol dehydrogenase from Amycolatopsis methanolica has a maximum at 326 nm. Reduced enzyme-bound pyridine dinucleotide could be reversibly oxidized by acetaldehyde. The fluorescence excitation spectrum for NADH bound to the enzyme has a maximum at 325 nm. Upon excitation at 290 nm, energy transfer from tryptophan to enzyme-bound NADH was negligible. The fluorescence emission spectrum (excitation at 325 nm) for NADH bound to the enzyme has a maximum at 422 nm. The fluorescence intensity is enhanced by a factor of 3 upon binding of isobutyramide (Kd = 59 microM). Isobutyramide acts as competitive inhibitor (Ki = 46 microM) with respect to the electron acceptor NDMA (N,N-dimethyl-p-nitrosoaniline), which binds to the enzyme containing the reduced cofactor. The nonreactive substrate analogue trifluoroethanol acts as a competitive inhibitor with respect to the substrate ethanol (Ki = 1.6 microM), which binds to the enzyme containing the oxidized cofactor. Far-UV circular dichroism spectra of the enzyme containing NADH and the enzyme containing NAD+ were identical, indicating that no major conformational changes occur upon oxidation or reduction of the cofactor. Near-UV circular dichroism spectra of NADH bound to the enzyme have a minimum at 323 nm (Deltaepsilon = -8.6 M-1 cm-1). The fluorescence anisotropy decay of enzyme-bound NADH showed no rotational freedom of the NADH cofactor. This implies a rigid environment as well as lack of motion of the fluorophore. The average fluorescence lifetime of NADH bound to the enzyme is 0.29 ns at 20 degreesC and could be resolved into at least three components (in the range 0.13-0.96 ns). Upon binding of isobutyramide to the enzyme-containing NADH, the average excited-state lifetime increased to 1.02 ns and could be resolved into two components (0.37 and 1.11 ns). The optical spectra of NADH bound to nicotinoprotein alcohol dehydrogenase have blue-shifted maxima compared to other NADH-dehydrogenase complexes, but comparable to that observed for NADH bound to horse liver alcohol dehydrogenase. The fluorescence lifetime of NADH bound to the nicotinoprotein is very short compared to enzyme-bound NADH complexes, also compared to NADH bound to horse liver alcohol dehydrogenase. The cofactor-protein interaction in the nicotinoprotein alcohol dehydrogenase active site is more rigid and apolar than that in horse liver alcohol dehydrogenase. The optical properties of NADH bound to nicotinoprotein alcohol dehydrogenase differ considerably from NADH (tightly) bound to UDP-galactose epimerase from Escherichia coli. This indicates that although both enzymes have NAD(H) as nonexchangeable cofactor, the NADH binding sites are quite different.  相似文献   

9.
The oxidation of alcohol to aldehyde by horse liver alcohol dehydrogenase (LADH) requires the transfer of a hydride ion from the alcohol substrate to the cofactor nicotinamide adenine dinucleotide (NAD). A quantum mechanical tunneling contribution to this hydride transfer step has been demonstrated in a number of LADH mutants designed to enhance or diminish this effect [Bahnson, B. J., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 12797-12802]. The active site double mutant Phe93 --> Trp/Val203 --> Ala shows a 75-fold reduction in catalytic efficiency relative to that of the native enzyme, and reduced tunneling relative to that of either single mutant. We present here two crystal structures of the double mutant: a 2.0 A complex with NAD and the substrate analogue trifluoroethanol and a 2.6 A complex with the isosteric NAD analogue CPAD and ethanol. Changes at the active site observed in both complexes are consistent with reduced activity and tunneling. The NAD-trifluoroethanol complex crystallizes in the closed conformation characteristic of the active enzyme. However, the NAD nicotinamide ring rotates away from the substrate, toward the space vacated by replacement of Val203 with the smaller alanine. Replacement of Phe93 with the larger tryptophan also produces unfavorable steric contacts with the nicotinamide carboxamide group, potentially destabilizing hydrogen bonds required to maintain the closed conformation. These contacts are relieved in the second complex by rotation of the CPAD pyridine ring into an unusual syn orientation. The resulting loss of the carboxamide hydrogen bonds produces an open conformation characteristic of the apoenzyme.  相似文献   

10.
S 5627 is a synthetic analogue of chlorogenic acid. S 5627 is a potent linear competitive inhibitor of glucose 6-phosphate (Glc-6-P) hydrolysis by intact microsomes (Ki = 41 nM) but is without effect on the enzyme in detergent- or NH4OH-disrupted microsomes. 3H-S 5627 was synthesized and used as a ligand in binding studies directed at characterizing T1, the Glc-6-P transporter. Binding was evaluated using Ca2+-aggregated microsomes, which can be sedimented at low g forces. Aside from a modest reduction in K values for both substrate and S 5627, Ca2+ aggregation had no effect on glucose-6-phosphatase (Glc-6-Pase). Scatchard plots of binding data are readily fit to a simple "two-site" model, with Kd = 21 nM for the high affinity site and Kd = 2 microM for the low affinity site. Binding to the high affinity site was competitively blocked by Glc-6-P (Ki = 9 microM), whereas binding was unaffected by mannose-6-phosphate, Pi, and PPi and only modestly depressed by 2-deoxy-D-glucose 6-phosphate, a poor substrate for Glc-6-Pase in intact microsomes. Thus the high affinity 3H-S 5627 binding site fits the criteria for T1. Permeabilization of the membrane with 0.3% (3-[(chloramidopropyl)-dimethylammonio]-1-propanesulfonate) activated Glc-6-Pase and broadened its substrate specificity, but it did not significantly alter the binding of 3H-S 5627 to the high affinity sites or the ability of Glc-6-P to block binding. These data demonstrate unequivocally that two independent Glc-6-P binding sites are involved in the hydrolysis of Glc-6-P by intact microsomes. The present findings are the strongest and most direct evidence to date against the notion that the substrate specificity and the intrinsic activity of Glc-6-Pase in native membranes are determined by specific conformational constraints imposed on the enzyme protein. These data constitute compelling evidence for the role of T1 in Glc-6-Pase activity.  相似文献   

11.
DNA photolyases catalyze the light-dependent repair of pyrimidine dimers in DNA. We have utilized chemical modification and site-directed mutagenesis to probe the interactions involved in substrate recognition by the yeast photolyase Phr1. Lys517 was protected from reductive methylation in the presence of substrate, but not in its absence, and the specific and nonspecific association constants for substrate binding by Phr1 (Lys517-->Ala) were decreased 10-fold. These results establish a role for Lys517 in substrate binding. Mutations at Arg507, Lys463, and Trp387 reduced both the overall affinity for substrate and substrate discrimination. Sites of altered interactions in ES complexes were identified by methylation and ethylation interference techniques. Interaction with the base immediately 3' to the dimer was altered in the Phr1(Lys517-->Ala). DNA complex, whereas interactions with the phosphate and base immediately 5' to the dimer were reduced when Phr1(Arg507-->Ala) bound substrate. Multiple interactions 5' and 3' to the dimer were perturbed in complexes containing Phr1(Trp387-->Ala) or Phr1(Lys463-->Ala). In addition the quantum yield for dimer photolysis by Phr1(Trp387-->Ala) was reduced 3-fold. The locations of these mutations establish that a portion of the DNA binding domain is comprised of residues in the highly conserved carboxyl-terminal half of the enzyme.  相似文献   

12.
A wealth of information available from x-ray crystallographic structures of enzyme-ligand complexes makes it possible to study interactions at the molecular level. However, further investigation is needed when i) the binding of the natural substrate must be characterized, because ligands in the stable enzyme-ligand complexes are generally inhibitors or the analogs of substrate and transition state, and when ii) ligand binding is in part poorly characterized. We have investigated these aspects in the binding of substrate uridyl 3',5'-adenosine (UpA) to ribonuclease A (RNase A). Based on the systematically docked RNase A-UpA complex resulting from our previous study, we have undertaken a molecular dynamics simulation of the complex with solvent molecules. The molecular dynamics trajectories of this complex are analyzed to provide structural explanations for varied experimental observations on the ligand binding at the B2 subsite of ribonuclease A. The present study suggests that B2 subsite stabilization can be effected by different active site groups, depending on the substrate conformation. Thus when adenosine ribose pucker is O4'-endo, Gln69 and Glu111 form hydrogen-bonding contacts with adenine base, and when it is C2'-endo, Asn71 is the only amino acid residue in direct contact with this base. The latter observation is in support of previous mutagenesis and kinetics studies. Possible roles for the solvent molecules in the binding subsites are described. Furthermore, the substrate conformation is also examined along the simulation pathway to see if any conformer has the properties of a transition state. This study has also helped us to recognize that small but concerted changes in the conformation of the substrate can result in substrate geometry favorable for 2',3' cyclization. The identified geometry is suitable for intraligand proton transfer between 2'-hydroxyl and phosphate oxygen atom. The possibility of intraligand proton transfer as suggested previously and the mode of transfer before the formation of cyclic intermediate during transphosphorylation are discussed.  相似文献   

13.
Water present in a ligand binding site of a protein has been recognized to play a major role in ligand-protein interactions. To date, rational drug design techniques do not usually incorporate the effect of these water molecules into the design strategy. This work represents a new strategy for including water molecules into a three-dimensional quantitative structure-activity relationship analysis using a set of glucose analogue inhibitors of glycogen phosphorylase (GP). In this series, the structures of the ligand-enzyme complexes have been solved by X-ray crystallography, and the positions of the ligands and the water molecules at the ligand binding site are known. For the structure-activity analysis, some water molecules adjacent to the ligands were included into an assembly which encompasses both the inhibitor and the water involved in the ligand-enzyme interaction. The mobility of some water molecules at the ligand binding site of GP gives rise to differences in the ligand-water assembly which have been accounted for using a simulation study involving force-field energy calculations. The assembly of ligand plus water was used in a GRID/GOLPE analysis, and the models obtained compare favorably with equivalent models when water was excluded. Both models were analyzed in detail and compared with the crystallographic structures of the ligand-enzyme complexes in order to evaluate their ability to reproduce the experimental observations. The results demonstrate that incorporation of water molecules into the analysis improves the predictive ability of the models and makes them easier to interpret. The information obtained from interpretation of the models is in good agreement with the conclusions derived from the structural analysis of the complexes and offers valuable insights into new characteristics of the ligands which may be exploited for the design of more potent inhibitors.  相似文献   

14.
A dataset of 82 protein-ligand complexes of known 3D structure and binding constant Ki was analysed to elucidate the important factors that determine the strength of protein-ligand interactions. The following parameters were investigated: the number and geometry of hydrogen bonds and ionic interactions between the protein and the ligand, the size of the lipophilic contact surface, the flexibility of the ligand, the electrostatic potential in the binding site, water molecules in the binding site, cavities along the protein-ligand interface and specific interactions between aromatic rings. Based on these parameters, a new empirical scoring function is presented that estimates the free energy of binding for a protein-ligand complex of known 3D structure. The function distinguishes between buried and solvent accessible hydrogen bonds. It tolerates deviations in the hydrogen bond geometry of up to 0.25 A in the length and up to 30 degrees in the hydrogen bond angle without penalizing the score. The new energy function reproduces the binding constants (ranging from 3.7 x 10(-2) M to 1 x 10(-14) M, corresponding to binding energies between -8 and -80 kJ/mol) of the dataset with a standard deviation of 7.3 kJ/mol corresponding to 1.3 orders of magnitude in binding affinity. The function can be evaluated very fast and is therefore also suitable for the application in a 3D database search or de novo ligand design program such as LUDI. The physical significance of the individual contributions is discussed.  相似文献   

15.
The determination of the high-resolution structure of the Thermomonospora fusca endocellulase E2 catalytic domain makes it ideal for exploring cellulase structure-function relationships. Here we present binding parameters (Kd, DeltaH degrees, and DeltaS degrees) describing the interaction of E2 with 4-methylumbelliferyl glycosides, determined by titrating the quenching of ligand fluorescence in equilibrium binding experiments. Quenched MU(Glc)2/E2 complexes were used as indicators in displacement titrations to measure the binding of natural glycosides and also of a nonhydrolyzable cellotetraose analogue. Binding of MU(Glc)2 and cellotriose were also determined by titration calorimetry. The results show that E2 binds glycosides exclusively in its active-site cleft, with high affinity and specificity. The observed patterns of ligand hydrolysis and the results with MU(Glc)2 as a substrate indicated that ligands bound to E2 with their nonreducing ends in position -2, consistent with the position of cellobiose in the E2cd structure. Polymerase chain reaction (PCR) mutagenesis of the conserved residue Tyr 73 (in E2 binding subsite -1) to Phe and Ser produced enzymes with lower activity but higher binding affinities, indicating that the volume of the subsite -1 binding pocket is crucial for enzyme function. Similarly, MUXylGlc (with its xylosyl unit located in position -1) bound with 100-fold higher affinity than MU(Glc)2. These results are similar to those for the related Trichoderma reesei exocellulase CBH II. The binding data were compared with that previously reported for CBH II and interpreted in terms of the functional differences between endo- and exocellulases.  相似文献   

16.
Binding of the Tetrahymena ribozyme's oligonucleotide substrate (S) involves P1 duplex formation with the ribozyme's internal guide sequence (IGS) to give an open complex, followed by docking of the P1 duplex into the catalytic core via tertiary interactions to give a closed complex. The overall binding energies provided by 2' OH groups on S and IGS have been measured previously. To obtain the energetic contribution of each of these 2' OH groups in the docking step, we have separately measured their contribution to the stability of a model P1 duplex using "substrate inhibition". This new approach allows measurement of duplex stabilities under conditions identical to those used for ribozyme binding measurements. The tertiary binding energies from the individual 2' OH groups include a small destabilizing contribution of 0.7 kcal/mol and stabilizing contributions of up to -2.9 kcal/mol. The energetic contributions of specific 2' OH groups are discussed in the context of considerable previous work that has characterized the tertiary interactions of the P1 duplex. A "threshold" model for the open and closed complexes is presented that provides a framework to interpret the energetic effects of functional group substitutions on the P1 duplex. The sum of the tertiary stabilization provided by the conserved G x U wobble at the cleavage site and the individual 2' OH groups on the P1 duplex is significantly greater than the observed tertiary stabilization of S (11.0 vs 2.2 kcal/mol). It is suggested that there is an energetic cost for docking the P1 duplex into the active site that is paid for by the "intrinsic binding energy" of groups on the P1 duplex. Substrates that lack sufficient tertiary binding energy to overcome this energetic barrier exhibit reduced reactivities. Thus, the ribozyme appears to use the intrinsic binding energy of groups on the P1 duplex for catalysis. This intrinsic binding energy may be used to position reactants within the active site and to induce electrostatic destabilization of the substrate, relative to its interactions in solution.  相似文献   

17.
The selectins mediate cellular interactions by binding carbohydrate determinants present on a limited number of glycoprotein ligands. L-selectin binds multiple ligands expressed on endothelial cells, while P-selectin interacts exclusively with P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes. In this study, L-selectin was shown to bind leukocytes through the P-selectin ligand, PSGL-1, although at lower levels than P-selectin. L-selectin binding to PSGL-1 is specific since it was blocked by Abs to L-selectin or PSGL-1, required appropriate glycosylation of PSGL-1, and was Ca2+ dependent. The contributions of the extracellular domains of the selectins to ligand binding was assessed using a panel of chimeric selectins created by exchange of domains between L-selectin and P- or E-selectin. The lectin and epidermal growth factor domains of L- and P-selectin contributed significantly to binding through similar, if not identical, regions of PSGL-1. The different chimeric selectins revealed that the lectin domain was the dominant determinant for ligand binding, while cooperative interactions between the lectin, epidermal growth factor, and short consensus repeat domains of the selectins also modified ligand binding specificity. L-selectin binding to PSGL-1 expressed by leukocytes may mediate neutrophil rolling on stationary leukocytes bound to cytokine-induced endothelial cells, which was previously reported to be a L-selectin-dependent process.  相似文献   

18.
The antibody D2.3 catalyzes the hydrolysis of several p-nitrobenzyl and p-nitrophenyl esters with significant rate enhancement; product inhibition is observed with the former compounds but not with the latter. Whereas enzyme specificity has been extensively studied by X-ray crystallography, structural data on catalytic antibodies have thus far related only to one of the reactions they catalyze. To investigate the substrate specificity and the substrate relative to product selectivity of D2.3, we have determined the structures of its complexes with two p-nitrophenyl phosphonate transition state analogs (TSAs) and with the reaction product, p-nitrophenol. The complexes with these TSAs, determined at 1.9 A resolution, and that with p-nitrobenzyl phosphonate determined previously, differ mainly by the locations and conformations of the ligands. Taken together with kinetic data, the structures suggest that a hydrogen bond to an atom of the substrate distant by eight covalent bonds from the carbonyl group of the hydrolyzed ester bond contributes to catalytic efficiency and substrate specificity. The structure of Fab D2.3 complexed with p-nitrophenol was determined at 2.1 A resolution. Release of p-nitrophenol is facilitated due to the unfavourable interaction of the partial charge of the nitro group of p-nitrophenolate with the hydrophobic cavity where it is located, and to the absence of a direct hydrogen bond between the product and the Fab. Catalytic specificity and the manner of product release are both affected by interactions with substrate atoms remote from the reaction center that were not programmed in the design of the TSA used to elicit this antibody. Selection of a catalytic antibody that makes use of TSA unprogrammed features has been made practical because of the screening for catalytic efficiency incorporated in the procedure used to obtain it.  相似文献   

19.
The isoalloxazine ring system of the FAD cofactor of p-hydroxybenzoate hydroxylase must be secluded from solvent at specific stages of catalysis in order to form and stabilize a flavin C4a-hydroperoxide. This species may then react with the activated phenolate of p-hydroxybenzoate. A number of crystal structures of the enzyme with alterations to active site substituents or complexes with analogue benzoates have revealed an alternate position for the isoalloxazine (Gatti et al. (1994) Science 266, 110-114; Schreuder et al. (1994) Biochemistry 33, 10161-10170). This new flavin conformation is 7 A "out" toward solvent and may open a passage for substrate entry to the active site. Arginine 220 is one of the few residues in the structure to demonstrate conformational changes when the flavin is "out". In this study we have made the Arg220Lys mutant to test the significance of this residue in flavin movement. The R220K mutation has brought about dramatic alterations to all aspects of catalysis. Stopped flow kinetic characterization of the mutant has revealed that, while the effector role for the substrate is maintained, there exists an order of magnitude decrease in the limiting rate of reduction, even though there is 40-fold increase in association with NADPH. The mutant enzyme has only a fraction of its reductive half-reaction coupled to product formation, and the hydroxylation process is slow. This occurs despite a higher proportion of the more activated substrate phenolate in the active site. Many of the observed changes can be attributed to a decrease in the stability of the "in" conformation of the flavin during the catalysis and indicate a role for flavin conformational states in many of the catalytic processes of the enzyme.  相似文献   

20.
In an essential step of blood coagulation, factor V is proteolytically processed by thrombin to generate the activated protein cofactor, factor Va, and to release the activation fragments E and C1. For the identification and characterization of sites of thrombin binding to factor V and its activation products, a new method was developed for immobilizing thrombin and other serine proteinases specifically (>/=92%) through their active sites and used in affinity chromatography studies of the interactions. Interactions of factor V with exosite I of thrombin were shown to regulate the factor V activation pathway from the 93% +/- 12% inhibition of the rate of activation correlated with specific binding of hirudin54-65 to this exosite. Chromatography of factor V on active-site-immobilized thrombin showed only a weak interaction, while the factor Va heterodimer bound specifically and with apparently higher affinity, in an interaction that was prevented by hirudin54-65. The heavy chain of subunit-dissociated factor Va bound to immobilized thrombin, while the light-chain subunit and fragment E had no detectable affinity. These results demonstrate a previously undescribed, exosite I-dependent interaction of thrombin with factor Va that occurs through the factor Va heavy chain. They support the further conclusion that similar exosite I-dependent binding of thrombin to the heavy-chain region of factor V contributes to recognition of factor V as a specific thrombin substrate and thereby regulates proteolytic activation of the protein cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号