首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 100-kW-peak Z-kW-average-power liquid-cooled ferrite digital phase shifter has been constructed using beryllia cooling of the ferrite toroid to meet single axis scanned array requirements. The phase-shift cross section external to the ferrite toroids is completely filled with the beryllia. Experiments indicate that the maximum temperature rise in the ferrite is no greater than 45/spl deg/ C. In tests using flux drive to 2 kW, the phase shifter exhibits a maximum phase drift of /spl plusmn/ 6/spl deg/ for 90/spl deg/ differential phase shift. The differential phase shift versus frequency varies less than /spl plusmn/ 0.5/spl deg/ for a 3-percent bandwidth.  相似文献   

2.
An X-band electrically-tunable ferroelectric phase shifter has been constructed. The phase shifter is reciprocal and consists of a thin ferroelectric slab completely filling the transverse plane of a rectangular waveguide with suitable dielectric matching sections placed symmetrically about the slab forming a band-pass filter. Phase shift is controlled by applying a dc electric field to the ferroelectric. The measured characteristics of this device indicate that incremental phase shifts of 40/spl deg/ to 50/spl deg/ are attainable over a bandwidth of 400 Mc centered about 9.3 kMc with insertion losses ranging from 2 to 6 db. Since the phase shifter does not require a magnetic field for operation, the device can be biased with inexpensive, light-weight equipment requiring negligible dc control power, and the response time can be expected to be fast.  相似文献   

3.
We describe a reflection type phase shifter which exhibits a large phase shift range. We characterized its response between 1.95 GHz and 2.15 GHz and achieved over 400/spl deg/ phase shift with less than 4dB insertion loss. The transition time from 0/spl deg/ to 180/spl deg/ is <20 nS. Our design is scalable to mm-wave operation because it uses no inductors.  相似文献   

4.
Two monolithic 3-bit active phase shifters using the vector sum method to K-band frequencies are reported in this paper. They are separately implemented using commercial 6-in GaAs HBT and high electron-mobility transistor (HEMT) monolithic-microwave integrated-circuit (MMIC) foundry processes. The MMIC HBT active phase shifter demonstrates an average gain of 8.87 dB and a maximum phase error of 11/spl deg/ at 18 GHz, while the HEMT phase shifter has 3.85-dB average measured gain with 11/spl deg/ maximum phase error at 20 GHz. The 20-GHz operation frequency of this HEMT MMIC is the highest among all the reported active phase shifters. The analysis for gain deviation and phase error of the active phase shifter using the vector sum method due to the individual variable gain amplifiers is also presented. The theoretical analysis can predict the measured minimum root-mean-square phase error 4.7/spl deg/ within 1/spl deg/ accuracy.  相似文献   

5.
We present the design and development of a novel integrated multiband phase shifter that has an embedded distributed amplifier for loss compensation in 0.18-/spl mu/m RF CMOS technology. The phase shifter achieves a measured 180/spl deg/ phase tuning range in a 2.4-GHz band and a measured 360/spl deg/ phase tuning range in both 3.5- and 5.8-GHz bands. The gain in the 2.4-GHz band varies from 0.14 to 6.6 dB during phase tuning. The insertion loss varies from -3.7 dB to 5.4-dB gain and -4.5 dB to 2.1-dB gain in the 3.5- and 5.8-GHz bands, respectively. The gain variation can be calibrated by adaptively tuning the bias condition of the embedded amplifier to yield a flat gain during phase tuning. The return loss is less than -10 dB at all conditions. The chip size is 1200 /spl mu/m/spl times/2300 /spl mu/m including pads.  相似文献   

6.
A varactor diode based microstrip phase shifter for 5.8GHz is presented. It is designed for use in microstrip traveling wave antennas where there is a strict limitation on the available space for the phase shifters. To meet all requirements, a reflective type phase shifter is chosen. Such a phase shifter includes a hybrid coupler. A compact branch line coupler is designed to make the phase shifter fit between the radiating elements in the antenna, while maintaining sufficient electrical performance. Phase shifters are designed with different types of stubs connecting the diodes to ground. A phase tuning range of 62/spl deg/ is measured for a phase shifter with parallel open stubs, and 92/spl deg/ with shorted stubs. Insertion loss is in both cases less than 0.6dB. A complete five-element array antenna is built and characterized. Measurements show beam scanning angles within /spl plusmn/32/spl deg/ from broadside.  相似文献   

7.
We present the design of an integrated multiband phase shifter in RF CMOS technology for phased array transmitters. The phase shifter has an embedded classical distributed amplifier for loss compensation. The phase shifter achieves a more than 180/spl deg/ phase tuning range in a 2.4-GHz band and a measured more than 360/spl deg/ phase tuning range in both 3.5-GHz and 5.8-GHz bands. The return loss is less than -10dB at all conditions. The feasibility for transmitter applications is verified through measurements. The output power at a 1-dB compression point (P/sub 1 dB/) is as high as 0.4dBmat 2.4GHz. The relative phase deviation around P/sub 1 dB/ is less than 3/spl deg/. The design is implemented in 0.18-/spl mu/mRF CMOS technology, and the chip size is 1200/spl mu/m /spl times/ 2300 /spl mu/m including pads.  相似文献   

8.
Ideal isolator conditions are derived using circuit analysis in a lumped-element isolator with three windings at angles of /spl theta/ and /spl phi/. The angle /spl theta/ can be arbitrary; however, /spl phi/ is restricted to lie on the bisector of cross-angle /spl theta/ or the supplementary angle of /spl theta/. We found that the isolator with /spl theta/=/spl phi/=60 [deg] behaves the same as the one with conventional structure with /spl theta/=/spl phi/=120 [deg]. However, the former has a 0/spl deg/ phase shift and the latter a 180/spl deg/ phase shift between the input and output. The theoretical prediction was experimentally confirmed with an 800-MHz-band isolator.  相似文献   

9.
An analysis of cascaded commensurate transmission-line C-section all-pass networks is presented. The analytical form of the transmission coefficient is found to have a very simple form, intimately related to the reflection coefficient of the stepped-impedance transformer prototype of the cascaded C-section. The phase function of cascaded commensurate transmission-line C-sections is investigated and found to be the arctangent of a reactance function in tan /spl theta/. Last, general, exact synthesis procedures for designing cascaded commensurate transmission-line C-section all-pass networks to have prescribed phase characteristics are presented, and two design examples are given. One of the examples is the exact design of a 3-section Schiffman 90/spl deg/ phase shifter, which has not been previously reported in the literature.  相似文献   

10.
The design of a high-power air-cooled microwave SPDT switch which is capable of operation at peak and average power levels of 500 kW and 666 watts, respectively, is described. The unit is of a differential phase shift circulator design employing 90/spl deg/ nonreciprocal phase shift elements which are forced air cooled. The phase shifter design employs dual ferrite toroids, "floating" in reduced height RG-51 waveguide. Two approaches are compared for heat sinking the phase shifter; namely the "H-beam" and the "I-beam" configurations. The results obtained indicate that the I-beam configuration is superior to the "H-beam" configuration. The switch exhibits an insertion loss of 0.6 dB maximum and isolation greater than 20 dB over a 100 MHz bandwidth centered at 9.375 GHz. The input VSWR of the switch over the frequency band is less than 1.28:1.  相似文献   

11.
Linear tunable phase shifter using a left-handed transmission line   总被引:2,自引:0,他引:2  
We demonstrate a compact, linear, and low loss variation hybrid phase shifter using a left-handed (LH) transmission line. For frequencies from 4.3 to 5.6 GHz, this phase shifter gives a nearly linear phase variation with voltage, with a maximum deviation of /spl plusmn/7.5/spl deg/. Within this frequency range, the maximum insertion loss is 3.6 dB, and the minimum insertion loss is 1.8 dB over a continuously adjustable phase range of more than 125/spl deg/, while minimum return loss is only 10.2 dB. Furthermore, this phase shifter requires only one control line, and it consumes almost no power.  相似文献   

12.
This paper presents a new approach to the automatic control of the turn-on angle used to excite the switched-reluctance motor (SRM). The control algorithm determines the turn-on angle that supports the most efficient operation of the motor drive system, and consists of two pieces. The first piece of the control technique monitors the position of the first peak of the phase current (/spl theta//sub p/) and seeks to align this position with the angle where the inductance begins to increase (/spl theta//sub m/). The second piece of the controller monitors the peak phase current and advances the turn-on angle if the commanded reference current cannot be produced by the controller. The first piece of the controller tends to be active below base speed of the SRM, where phase currents can be built easily by the inverter and /spl theta//sub p/ is relatively independent of /spl theta//sub m/. The second piece of the controller is active above base speed, where the peak of the phase currents tends to naturally occur at /spl theta//sub m/ regardless of the current amplitude. The two pieces of the controller naturally exchange responsibility as a result of a change in command or operating point. The motor, inverter and control system are modeled in Simulink to demonstrate the operation of the system. The control technique is then applied to an experimental SRM system. Experimental operation documents that the technique provides for efficient operation of the drive.  相似文献   

13.
In this paper, a broadband 180/spl deg/ bit phase shifter using a new switched-network was presented. The new network is composed of a /spl lambda//2 coupled line and parallel /spl lambda//8 open and short stubs, which are shunted at the edge points of a coupled line, respectively. According to a desired phase shift, it provides a controllable phase dispersive characteristic by the proper determination of Z/sub m/,Z/sub s/, and R values. The 180/spl deg/ bit phase shifter operated at 3 GHz was fabricated and experimented using design graphs which provide the required Z/sub m/,Z/sub s/ values, and I/O match and phase bandwidths. The experimental performances showed broadband characteristics.  相似文献   

14.
Distributed 2- and 3-bit W-band MEMS phase shifters on glass substrates   总被引:1,自引:0,他引:1  
This paper presents state-of-the-art RF microelectromechanical (MEMS) phase shifters at 75-110 GHz based on the distributed microelectromechanical transmission-line (DMTL) concept. A 3-bit DMTL phase shifter, fabricated on a glass substrate using MEMS switches and coplanar-waveguide lines, results in an average loss of 2.7 dB at 78 GHz (0.9 dB/bit). The measured figure-of-merit performance is 93/spl deg//dB-100/spl deg//dB (equivalent to 0.9 dB/bit) of loss at 75-110 GHz. The associated phase error is /spl plusmn/3/spl deg/ (rms phase error is 1.56/spl deg/) and the reflection loss is below -10 dB over all eight states. A 2-bit phase shifter is also demonstrated with comparable performance to the 3-bit design. It is seen that the phase shifter can be accurately modeled using a combination of full-wave electromagnetic and microwave circuit analysis, thereby making the design quite easy up to 110 GHz. These results represent the best phase-shifter performance to date using any technology at W-band frequencies. Careful analysis indicates that the 75-110-GHz figure-of-merit performance becomes 150/spl deg//dB-200/spl deg//dB, and the 3-bit average insertion loss improves to 1.8-2.1 dB if the phase shifter is fabricated on quartz substrates.  相似文献   

15.
Continuously variable ferroelectric (BST on sapphire) phase shifters based on all-pass networks are presented. An all-pass network phase shifter consists of only lumped LC elements, and thus the total size of the phase shifter is kept to less than 2.2 mm /spl times/ 2.6 mm at 2.4 GHz. The tunability (C/sub max//C/sub min/) of a BST interdigital capacitor is over 2.9 with a bias voltage of 140 V. The phase shifter provides more than 121/spl deg/ phase shift with the maximum insertion loss of 1.8 dB and the worst case return loss of 12.5 dB from 2.4 GHz to 2.5 GHz. By cascading two identical phase shifters, more than 255/spl deg/ phase shift is obtained with the maximum insertion loss of 3.75 dB. The loss figure-of-merit of both the single- and double-section phase shifters is over 65/spl deg//dB from 2.4 GHz to 2.5 GHz.  相似文献   

16.
We present a distributed phase shifter with an equal ripple return loss at its operation frequency range. The phase shifter is based on a periodic structure and consists of a coplanar waveguide (CPW) line periodically loaded with voltage-variable barium strontium titanate (BST) interdigitated capacitors. Measurements show that its return loss is better than -15dB at frequencies from direct current to 16GHz, and at 9.4GHz, its phase shift is 41/spl deg/ under 120-V applied bias voltage.  相似文献   

17.
The design and performance of two new miniature 360/spl deg/ continuous-phase-control monolithic microwave integrated circuits (MMICs) using the vector sum method are presented. Both are implemented using commercial 0.18-/spl mu/m CMOS process. The first phase shifter demonstrates all continuous phase and an insertion loss of 8 dB with a 37-dB dynamic range from 15 to 20 GHz. The chip size is 0.95 mm /spl times/ 0.76 mm. The second phase shifter can achieve all continuous phase and an insertion loss of 16.2 dB with a 38.8-dB dynamic range at the same frequency range. The chip size is 0.71 mm /spl times/ 0.82 mm. To the best of the authors' knowledge, these circuits are the first demonstration of microwave CMOS phase shifters using the vector sum method with the smallest chip size for all MMIC phase shifters with 360/spl deg/ phase-control range above 5 GHz reported to date.  相似文献   

18.
The design and performance of a compact low-loss X-band true-time-delay (TTD) MEMS phase shifter fabricated on 8-mil GaAs substrate is described. A semi-lumped approach using microstrip transmission lines and metal-insulator-metal (MIM) capacitors is employed for the delay lines in order to both reduce circuit size as well as avoid the high insertion loss found in typical miniaturized designs. The 2-bit phase shifter achieved an average insertion loss of -0.70 dB at 9.45 GHz, and an associated phase accuracy of /spl plusmn/1.3/spl deg/. It occupies an area of only 5 mm/sup 2/, which is 44% the area of the smallest known X-band MEMS phase shifter . The phase shifter operates over 6-14 GHz with a return loss of better than -14 dB.  相似文献   

19.
A method is introduced for designing continuous varactor-diode phase shifters with optimum frequency response. The circuit used gives very small frequency variations of the phase shift if the maximum phase shift of the device is less than about 200/spl deg/. Measurement results on a 180/spl deg/ L-band phase shifter are presented. This unit gives less than 5/spl deg/ variation of any given phase shift less than 180/spl deg/, when the frequency is changed from 1.5 to 1.7 GHz.  相似文献   

20.
An absolute calibration procedure for periodic microwave phase shifters is described. Increments on the phase shifter are compared by substitution with a reproducible phase-shift step of initially unknown value. The periodic nature of the phase shifter provides a reference phase shift of 360/spl deg/, and alternative methods are outlined for the derivation of the correction curve from the step measurements. It is shown that the accuracy of the calibration is governed by the precision and reproducibility of the phase shifter under test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号