首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在锂电池充电管理集成电路工作过程中需要监测充放电的各种状态运行情况,监测时需要高性能的参考电压作为比较点,为此设计一种高性能的带隙基准源,通过相同材料电阻的比值来抵消带隙基准源的一阶温度系数来达到低温度系数,同时还设计了修调电路进一步提高基准电压的精度。锂电池充电管理集成电路采用0.8μm BiCMOS 9V工艺流片,其中带隙基准源面积为0.035mm???2。测试结果表明:在-40~125℃温度范围内,基准电压的温度系数为11ppm/℃;电源电压在4.5~9.0V范围内变化时,基准电压的变化量为0.4 mV,电源调整率为0.09mV/V;在电源电压6V时,带隙基准源的电源抑制比在低频(小于1kHz)时为-74dB。  相似文献   

2.
一种采用斩波调制的高精度带隙基准源的设计   总被引:1,自引:0,他引:1  
为了抑制运算放大器的输入失调电压对带隙基准源的影响,提高输出电压的精度,基于斩波调制技术,设计了一种高精度带隙基准源电路.通过0.25 μm BiCMOS工艺模型仿真验证,结果表明,运算放大器的差分输入对管的失配为±2%时,该基准源的输出电压波动峰峰值为0.38 mV,与传统带隙基准源相比,相对精度提高了113倍.当电源电压在2.5~6.0V内,基准电压源的波动小于0.085 mV,温度为-40~125℃时,电路的温度系数为19ppm/℃.  相似文献   

3.
崔嘉杰  罗萍 《微电子学》2014,(4):416-419
基于CSMC 0.5μm标准CMOS工艺,设计了一种高精度电流型CMOS带隙基准电压源。仿真结果表明,温度在-40℃~125℃范围内,基准输出电压的温度系数为1.3×10-5/℃;电源电压在3.3~5 V之间变化时,基准输出电压变化为0.076 mV,电源抑制比PSRR为-89 dB。同时,该电路包含修调电路,可在不同工艺角下进行校正,具有温度系数低、电源抑制比高、精度高等特点。  相似文献   

4.
1V电源非线性补偿的高温度稳定性电压带隙基准源   总被引:1,自引:0,他引:1  
秦波  贾晨  陈志良  陈弘毅 《半导体学报》2006,27(11):2035-2039
阐述了电源电压为1V的非线性补偿CMOS电压带隙基准源,该基准源具有很高的温度稳定性.基准源电路中运用了rail-to-rail运算放大器(OPA).根据测试结果,室温下的输出电压为351.9mV,当温度在15~100℃变化时,输出电压在351.5~352.0mV之间变化,温度系数约为16.7ppm/℃.电路的功耗为0.16mW,芯片面积是0.18mm2.  相似文献   

5.
1V电源非线性补偿的高温度稳定性电压带隙基准源   总被引:7,自引:0,他引:7  
秦波  贾晨  陈志良  陈弘毅 《半导体学报》2006,27(11):2035-2039
阐述了电源电压为1V的非线性补偿CMOS电压带隙基准源,该基准源具有很高的温度稳定性.基准源电路中运用了rail-to-rail运算放大器(OPA).根据测试结果,室温下的输出电压为351.9mV,当温度在15~100℃变化时,输出电压在351.5~352.0mV之间变化,温度系数约为16.7ppm/℃.电路的功耗为0.16mW,芯片面积是0.18mm2.  相似文献   

6.
张强  陈贵灿  田泽  王进军  李攀 《电子工程师》2007,33(9):21-24,59
设计了一款带有软启动电路的精密CMOS带隙基准源,并且利用PN结正向导通电压具有负温度系数和基准源提供的偏置电流具有正温度系数的原理实现了过温保护功能。采用UMC公司0.6μm 2P2M标准CMOS工艺进行设计和仿真,HSPICE模拟表明带隙基准的输出电压为1.293 V,且具有较高的精度和稳定性。在1.5V~4.0V的电源电压范围内基准随输入电压的最大偏移为0.27 mV;在-40℃~120℃的温度范围内,基准随温度的变化约为4.41 mV;基准的输出启动时间约为25μs;当工作温度超过160℃时过温保护电路将输出使能信号关断整个系统。  相似文献   

7.
李帅人  周晓明  吴家国 《电子科技》2012,25(9):88-90,114
基于TSMC40nmCMOS工艺设计了一种高精度带隙基准电路。采用Spectre工具仿真,结果表明,带隙基准输出电压在温度为-40—125℃的范围内具有10×10^-6/℃的温度系数,在电源电压在1.5-5.5V变化时,基准输出电压随电源电压变化仅为0.42mV,变化率为0.23mv/V,采用共源共栅电流镜后,带隙基准在低频下的电源电压抑制比为-72dB。  相似文献   

8.
基于传统的Brokaw结构带隙基准源进行改进,采用无运放的Brokaw结构基准源,避免运算放大器带来的输入失调电压的影响,提高基准电压精度。针对不同工艺角下基准温度特性曲线零温度系数点变化导致温度系数变差的问题,设计了一种分段线性温度补偿与电阻修调结合的补偿修调方案,对基准输出进行温度补偿的同时修调电压精度。相比于传统分段线性补偿法,该方案避免了在其他工艺角下分段补偿时出现的补偿不足或补偿过度的情况,实现了基准电压源输出在器件全工艺角组合下的低温度系数和高精度。电路基于TSMC 0.18 μm BCD工艺设计。仿真结果表明,该电路在5 V电源电压下输出电压为1.201 V,输出失调电压为3.3 mV。在全工艺角下,-40 ℃~+125 ℃温度范围内,基准电压温度系数最大为7.48×10-6/℃,输出电压为1.201(1±0.16%) V。  相似文献   

9.
闫苗苗  焦立男  柳有权 《微电子学》2020,50(2):171-175, 183
设计了一种用于超低功耗线性稳压器电路的基准电压源,研究了NMOSFET阈值电压的温度特性。采用耗尽/增强型电压基准结构,显著降低了功耗。采用共源共栅型结构,提高了电源抑制比。设计了数模混合集成熔丝修调网络,优化了输出电压精度和温漂。电路基于0.35μm CMOS工艺实现。仿真结果表明,在2.2~5.5 V输入电压下,基准电压为814 mV,精度可达±1%。在-40℃~125℃范围内,温漂系数为2.52×10-5/℃。低频下,电源抑制比为-99.17 dB,静态电流低至27.4 nA。  相似文献   

10.
提出了一种新颖的带有数字控制的带隙基准电压源,此带隙基准电压源通过控制PNP晶体管的导通来实现可调的输出参考电压和可调的温度系数.此电路通过数字信号控制获得了一组不同的温度曲线,从这组温度曲线中,可以得到精确的输出参考电压和非常好的温度特性曲线.数字控制型带隙基准电压源的输出电压误差可以控制在±4 mV以内,最好的温度系数可以达到8.3×10-6/℃(温度从-40~80℃变化时),在电源电压从1.5~3.3 V变化时输出参考电压仅变化1 mV.所设计的带隙基准电压源,采用SMIC 0.18 μm CMOS工艺流片实现,面积为0.09 mm2.  相似文献   

11.
传统带隙基准源电路采用PNP型三极管来产生ΔVbe,此结构使运放输入失调电压直接影响输出电压的精度。文章在对传统CMOS带隙电压基准源电路原理的分析基础上,提出了一种综合了一阶温度补偿和双极型带隙基准电路结构优点的高性能带隙基准电压源。采用NPN型三极管产生ΔVbe,消除了运放失调电压影响。该电路结构简洁,电源抑制比高。整个电路采用SMIC 0.18μmCMOS工艺实现。通过Cadence模拟软件进行仿真,带隙基准的输出电压为1.24V,在-40℃~120℃温度范围内其温度系数为30×10-6/℃,电源抑制比(PSRR)为-88 dB,电压拉偏特性为31.2×10-6/V。  相似文献   

12.
针对传统CMOS带隙电压基准源电路电源电压较高,基准电压输出范围有限等问题,通过增加启动电路,并采用共源共栅结构的PTAT电流产生电路,设计了一种高精度、低温漂、与电源无关的具有稳定电压输出特性的带隙电压源.基于0.5μm高压BiCMOS工艺对电路进行了仿真,结果表明,在-40℃~85℃范围内,该带隙基准电路的温度系数为7ppm/℃,室温下的带隙基准电压为1.215 V.  相似文献   

13.
设计了一款低温度系数的自偏置CMOS带隙基准电压源电路,分析了输出基准电压与关键器件的温度依存关系,实现了低温度系数的电压输出。后端物理设计采用多指栅晶体管阵列结构进行对称式版图布局,以压缩版图面积。基于65 nm/3.3 V CMOS RF器件模型,在Cadence IC设计平台进行原理图和电路版图设计,并对输出参考电压的精度、温度系数、电源抑制比(PSRR)和功耗特性进行了仿真分析和对比。结果表明,在3.3 V电源和27℃室温条件下,输出基准电压的平均值为765.7 mV,功耗为0.75μW;在温度为-55~125℃时,温度系数为6.85×10~(-6)/℃。此外,输出基准电压受电源纹波的影响较小,1 kHz时的PSRR为-65.3 dB。  相似文献   

14.
文章介绍了一种用在高精度A/D转换器中的CMOS电压参考源,依靠PMOS管阈值电压差来产生电流,在外接下拉电阻上产生电压参考源。该种结构的电路温度系数基本在10×10-6/℃左右, 所以这种参考电压可以适用于高精度A/D转换器中。  相似文献   

15.
在对传统典型CMOS带隙电压基准源电路分析基础上提出了一种高精度、高电源抑制带隙电压基准源。采用二阶曲率补偿技术,电路采用预电压调整电路,为基准电路提供稳定的电源,提高了电源抑制比,在提高精度的同时兼顾了电源抑制比,整个电路采用了CSMC0.5μm标准CMOS工艺实现,采用spectre进行进行仿真,仿真结果显示当温度为-40℃~80℃,输出基准电压变化小于1mV,温度系数为3.29×10-6℃,低频时(1kHz)的电源抑制比达到75dB,基准电路在高于3.3V电源电压下可以稳定工作,具有较好的性能。  相似文献   

16.
提出了一种高精度、低功耗、小面积的电流型CMOS基准电压源以满足非制冷红外焦平面(IRFPA)读出电路对基准电压源模块的要求。设计中采用两种分别具有正负一阶温度系数的电阻,通过对基准电压源的高阶温度系数进行补偿,获得更好的温度系数TC(Temperature Coefficient)。通过使用共源共栅结构代替传统的运放,节约了传统运放和偏置电路的功耗,并且具有出色的电源电压抑制比PSRR(Power Supply Reject Ratio)。该设计使用标准0.18 m CMOS工艺实现,工作电压3.3 V,-40~120 ℃温度范围内,输出基准电压温度系数约为3.7 ppm/℃,PSRR约为-78 dB@1 kHz,在25 ℃时消耗电流6.3 A,消耗芯片面积仅230 m100 m,所提出的电路是一种低功耗、节约面积的设计。  相似文献   

17.
为了满足深亚微米级集成电路对低温漂、低功耗电源电压的需求,提出了一种在0.25μm N阱CMOS工艺下,采用一阶温度补偿技术设计的CMOS带隙基准电压源电路。电路核心部分由双极晶体管构成,实现了VBE和VT的线性叠加,获得近似零温度系数的输出电压。T-SPICE软件仿真表明,在3.3 V电源电压下,当温度在-20~70℃之间变化时,该电路输出电压的温度系数为10×10-6/℃,输出电压的标准偏差为1 mV,室温时电路的功耗为5.283 1 mW,属于低温漂、低功耗的基准电压源。  相似文献   

18.
在传统带隙基准电压源电路结构的基础上,通过在运放中引入增益提高级,实现了一种用于音频Σ-ΔA/D转换器的CMOS带隙电压基准源。在一阶温度补偿下实现了较高的电源抑制比(PSRR)和较低的温度系数。该电路采用SIMC 0.18-μm CMOS工艺实现。利用Cadence/Spectre仿真器进行仿真,结果表明,在1.8 V电源电压下,-40~125℃范围内,温度系数为9.699 ppm/℃;在27℃下,10 Hz时电源抑制比为90.2 dB,20 kHz时为74.97 dB。  相似文献   

19.
Zhou Zekun  Ming Xin  Zhang Bo  Li Zhaoji 《半导体学报》2010,31(1):015010-015010-4
A high precision high-order curvature-compensated bandgap reference compatible with the standard CMOS process, which uses a compensation proportional to V_TlnT realized by utilizing voltage to current converters and the voltage current characteristics of a base-emitter junction, is presented. Experiment results of the proposed bandgap reference implemented with the CSMC 0.5-μm CMOS process demonstrate that a temperature coefficient of 3.9 ppm/℃ is realized at 3.6 V power supply, a power supply rejection ratio of 72 dB is achieved, and the line regulation is better than 0.304 mV/V dissipating a maximum supply current of 42μA.  相似文献   

20.
吴相俊 《电子与封装》2007,7(12):24-26,29
文章对传统典型CMOS带隙电压基准源电路分析和总结,重点分析了温度补偿原理。在对传统温度补偿技术改进的基础上,采用低失调电压运算放大器,融合了熔丝烧写调整电压技术,提出了一个温漂低于15×10-6℃-1的改进型带隙基准源电路。整个电路采用CSMC0.5μm工艺设计,采用Hspice进行仿真。为补偿工艺偏差,输出电压及输出电压的温漂均可通过铝熔丝烧写来调整。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号