首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W.K. Wong 《Pattern recognition》2012,45(4):1511-1523
How to define sparse affinity weight matrices is still an open problem in existing manifold learning algorithms. In this paper, we propose a novel unsupervised learning method called Non-negative Sparseness Preserving Embedding (NSPE) for linear dimensionality reduction. Differing from the manifold learning-based subspace learning methods such as Locality Preserving Projections (LPP), Neighbor Preserving Embedding (NPE) and the recently proposed sparse representation based Sparsity Preserving Projections (SPP); NSPE preserves the non-negative sparse reconstruction relationships in low-dimensional subspace. Another novelty of NSPE is the sparseness constraint, which is directly added to control the non-negative sparse representation coefficients. This gives a more ground truth model to imitate the actions of the active neuron cells of V1 of the primate visual cortex on information processing. Although labels are not used in the training steps, the non-negative sparse representation can still discover the latent discriminant information and thus provides better measure coefficients and significant discriminant abilities for feature extraction. Moreover, NSPE is more efficient than the recently proposed sparse representation based SPP algorithm. Comprehensive comparison and extensive experiments show that NSPE has the competitive performance against the unsupervised learning algorithms such as classical PCA and the state-of-the-art techniques: LPP, NPE and SPP.  相似文献   

2.
Fei Zang  Jiangshe Zhang 《Neurocomputing》2011,74(12-13):2176-2183
Recently, sparsity preserving projections (SPP) algorithm has been proposed, which combines l1-graph preserving the sparse reconstructive relationship of the data with the classical dimensionality reduction algorithm. However, when applied to classification problem, SPP only focuses on the sparse structure but ignores the label information of samples. To enhance the classification performance, a new algorithm termed discriminative learning by sparse representation projections or DLSP for short is proposed in this paper. DLSP algorithm incorporates the merits of both local interclass geometrical structure and sparsity property. That makes it possess the advantages of the sparse reconstruction, and more importantly, it has better capacity of discrimination, especially when the size of the training set is small. Extensive experimental results on serval publicly available data sets show the feasibility and effectiveness of the proposed algorithm.  相似文献   

3.
局部保留投影(Locality preserving projections,LPP)是一种常用的线性化流形学习方法,其通过线性嵌入来保留基于图所描述的流形数据本质结构特征,因此LPP对图的依赖性强,且在嵌入过程中缺少对图描述的进一步分析和挖掘。当图对数据本质结构特征描述不恰当时,LPP在嵌入过程中不易实现流形数据本质结构的有效提取。为了解决这个问题,本文在给定流形数据图描述的条件下,通过引入局部相似度阈值进行局部判别分析,并据此建立判别正则化局部保留投影(简称DRLPP)。该方法能够在现有图描述的条件下,有效突出不同流形结构在线性嵌入空间中的可分性。在人造合成数据集和实际标准数据集上对DRLPP以及相关算法进行对比实验,实验结果证明了DRLPP的有效性。  相似文献   

4.
基于鉴别稀疏保持嵌入的人脸识别算法   总被引:3,自引:0,他引:3  
鉴于近年来稀疏表示(Sparse representation,SR)在高维数据例如人脸图像的特征提取与降维领域的快速发展,对原始的稀疏保持投影(Sparsity preserving projection,SPP)算法进行了改进,提出了一种叫做鉴别稀疏保持嵌入(Discriminant sparsity preserving embedding,DSPE)的算法. 通过求解一个最小二乘问题来更新SPP中的稀疏权重并得到一个更能真实反映鉴别信息的鉴别稀疏权重,最后以最优保持这个稀疏权重关系为目标来计算高维数据的低维特征子空间.该算法是一个线性的监督学习算法,通过引入鉴别信息,能够有效地对高维数据进行降维. 在ORL库、Yale库、扩展Yale B库和CMU PIE库上的大量实验结果验证了算法的有效性.  相似文献   

5.
Dimensionality reduction methods (DRs) have commonly been used as a principled way to understand the high-dimensional data such as face images. In this paper, we propose a new unsupervised DR method called sparsity preserving projections (SPP). Unlike many existing techniques such as local preserving projection (LPP) and neighborhood preserving embedding (NPE), where local neighborhood information is preserved during the DR procedure, SPP aims to preserve the sparse reconstructive relationship of the data, which is achieved by minimizing a L1 regularization-related objective function. The obtained projections are invariant to rotations, rescalings and translations of the data, and more importantly, they contain natural discriminating information even if no class labels are provided. Moreover, SPP chooses its neighborhood automatically and hence can be more conveniently used in practice compared to LPP and NPE. The feasibility and effectiveness of the proposed method is verified on three popular face databases (Yale, AR and Extended Yale B) with promising results.  相似文献   

6.
In this paper, an efficient feature extraction method named as constrained maximum variance mapping (CMVM) is developed. The proposed algorithm can be viewed as a linear approximation of multi-manifolds learning based approach, which takes the local geometry and manifold labels into account. The CMVM and the original manifold learning based approaches have a point in common that the locality is preserved. Moreover, the CMVM is globally maximizing the distances between different manifolds. After the local scatters have been characterized, the proposed method focuses on developing a linear transformation that can maximize the dissimilarities between all the manifolds under the constraint of locality preserving. Compared to most of the up-to-date manifold learning based methods, this trick makes contribution to pattern classification from two aspects. On the one hand, the local structure in each manifold is still kept; on the other hand, the discriminant information between manifolds can be explored. Finally, FERET face database, CMU PIE face database and USPS handwriting data are all taken to examine the effectiveness and efficiency of the proposed method. Experimental results validate that the proposed approach is superior to other feature extraction methods, such as linear discriminant analysis (LDA), locality preserving projection (LPP), unsupervised discriminant projection (UDP) and maximum variance projection (MVP).  相似文献   

7.
Face recognition using laplacianfaces   总被引:47,自引:0,他引:47  
We propose an appearance-based face recognition method called the Laplacianface approach. By using locality preserving projections (LPP), the face images are mapped into a face subspace for analysis. Different from principal component analysis (PCA) and linear discriminant analysis (LDA) which effectively see only the Euclidean structure of face space, LPP finds an embedding that preserves local information, and obtains a face subspace that best detects the essential face manifold structure. The Laplacianfaces are the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the face manifold. In this way, the unwanted variations resulting from changes in lighting, facial expression, and pose may be eliminated or reduced. Theoretical analysis shows that PCA, LDA, and LPP can be obtained from different graph models. We compare the proposed Laplacianface approach with Eigenface and Fisherface methods on three different face data sets. Experimental results suggest that the proposed Laplacianface approach provides a better representation and achieves lower error rates in face recognition.  相似文献   

8.
Locality-preserved maximum information projection.   总被引:3,自引:0,他引:3  
Dimensionality reduction is usually involved in the domains of artificial intelligence and machine learning. Linear projection of features is of particular interest for dimensionality reduction since it is simple to calculate and analytically analyze. In this paper, we propose an essentially linear projection technique, called locality-preserved maximum information projection (LPMIP), to identify the underlying manifold structure of a data set. LPMIP considers both the within-locality and the between-locality in the processing of manifold learning. Equivalently, the goal of LPMIP is to preserve the local structure while maximize the out-of-locality (global) information of the samples simultaneously. Different from principal component analysis (PCA) that aims to preserve the global information and locality-preserving projections (LPPs) that is in favor of preserving the local structure of the data set, LPMIP seeks a tradeoff between the global and local structures, which is adjusted by a parameter alpha, so as to find a subspace that detects the intrinsic manifold structure for classification tasks. Computationally, by constructing the adjacency matrix, LPMIP is formulated as an eigenvalue problem. LPMIP yields orthogonal basis functions, and completely avoids the singularity problem as it exists in LPP. Further, we develop an efficient and stable LPMIP/QR algorithm for implementing LPMIP, especially, on high-dimensional data set. Theoretical analysis shows that conventional linear projection methods such as (weighted) PCA, maximum margin criterion (MMC), linear discriminant analysis (LDA), and LPP could be derived from the LPMIP framework by setting different graph models and constraints. Extensive experiments on face, digit, and facial expression recognition show the effectiveness of the proposed LPMIP method.  相似文献   

9.
为提升人脸识别算法的鲁棒性,减少判别信息的冗余度,提出基于全局不相关的多流形判别学习算法(UFDML)。使用特征空间到特征空间的距离,学习样本局部判别信息,提出全局不相关约束,使提取的判别特征是统计不相关的。在Yale,AR,ORL人脸库上的实验结果表明,与LPP(局部保持投影)、LDA(线性判别分析)、UDP(非监督判别投影)等人脸识别算法相比,所提算法的平均识别率高于其它算法,验证了其有效性。  相似文献   

10.
To preserve the sparsity structure in dimensionality reduction, sparsity preserving projection (SPP) is widely used in many fields of classification, which has the advantages of noise robustness and data adaptivity compared with other graph based method. However, the sparsity parameter of SPP is fixed for all samples without any adjustment. In this paper, an improved SPP method is proposed, which has an adaptive parameter adjustment strategy during sparse graph construction. With this adjustment strategy, the sparsity parameter of each sample is adjusted adaptively according to the relationship of those samples with nonzero sparse representation coefficients, by which the discriminant information of graph is enhanced. With the same expectation, similarity information both in original space and projection space is applied for sparse representation as guidance information. Besides, a new measurement is introduced to control the influence of each sample’s local structure on projection learning, by which more correct discriminant information should be preserved in the projection space. With the contributions of above strategies, the low-dimensional space with high discriminant ability is found, which is more beneficial for classification. Experimental results on three datasets demonstrate that the proposed approach can achieve better classification performance over some available state-of-the-art approaches.  相似文献   

11.
Graph embedding based learning method plays an increasingly significant role on dimensionality reduction (DR). However, the selection to neighbor parameters of graph is intractable. In this paper, we present a novel DR method called adaptive graph embedding discriminant projections (AGEDP). Compared with most existing DR methods based on graph embedding, such as marginal Fisher analysis which usually predefines the intraclass and interclass neighbor parameters, AGEDP applies all the homogeneous samples for constructing the intrinsic graph, and simultaneously selects heterogeneous samples within the neighborhood generated by the farthest homogeneous sample for constructing the penalty graph. Therefore, AGEDP not only greatly enhances the intraclass compactness and interclass separability, but also adaptively performs neighbor parameter selection which considers the fact that local manifold structure of each sample is generally different. Experiments on AR and COIL-20 datasets demonstrate the effectiveness of the proposed method for face recognition and object categorization, and especially under the interference of occlusion, noise and poses, it is superior to other graph embedding based methods with three different classifiers: nearest neighbor classifier, sparse representation classifier and linear regression classifier.  相似文献   

12.
In practice, many applications require a dimensionality reduction method to deal with the partially labeled problem. In this paper, we propose a semi-supervised dimensionality reduction framework, which can efficiently handle the unlabeled data. Under the framework, several classical methods, such as principal component analysis (PCA), linear discriminant analysis (LDA), maximum margin criterion (MMC), locality preserving projections (LPP) and their corresponding kernel versions can be seen as special cases. For high-dimensional data, we can give a low-dimensional embedding result for both discriminating multi-class sub-manifolds and preserving local manifold structure. Experiments show that our algorithms can significantly improve the accuracy rates of the corresponding supervised and unsupervised approaches.  相似文献   

13.
基于大间距准则的不相关保局投影分析   总被引:1,自引:0,他引:1  
龚劬  唐萍峰 《自动化学报》2013,39(9):1575-1580
局部保持投影(Locality preserving projections,LPP)算法只保持了目标在投影后的邻域局部信息,为了更好地刻画数据的流形结构, 引入了类内和类间局部散度矩阵,给出了一种基于有效且稳定的大间距准则(Maximum margin criterion,MMC)的不相关保局投影分析方法.该方法在最大化散度矩阵迹差时,引入尺度因子α,对类内和类间局部散度矩阵进行加权,以便找到更适合分类的子空间并且可避免小样本问题; 更重要的是,大间距准则下提取的判别特征集一般情况下是统计相关的,造成了特征信息的冗余, 因此,通过增加一个不相关约束条件,利用推导出的公式提取不相关判别特征集, 这样做, 对正确识别更为有利.在Yale人脸库、PIE人脸库和MNIST手写数字库上的测试结果表明,本文方法有效且稳定, 与LPP、LDA (Linear discriminant analysis)和LPMIP(Locality-preserved maximum information projection)方法等相比,具有更高的正确识别率.  相似文献   

14.
完备鉴别保局投影人脸识别算法   总被引:15,自引:0,他引:15  
为了充分利用保局总体散布主元空间内的鉴别信息进行人脸识别,提出了一种完备鉴别保局投影(complete discriminant locality preserving projections,简称CDLPP)人脸识别算法.鉴于Fisher鉴别分析和保局投影已经被广泛的应用于人脸识别,完备鉴别保局投影(locality preserving projections,简称LPP)算法将这两者结合起来,分析了保局类内散布、类间散布和总体散布的主元空间和零空间内包含的鉴别信息.该算法采用奇异值分解(singular value decomposition,简称SVD),去除了不含任何鉴别信息的保局总体散布的零空间;分别在保局类内散布的主元空间和零空间提取规则鉴别特征和不规则鉴别特征;用串联的方式在特征层融合规则鉴别特征和不规则鉴别特征形成完备的鉴别特征进行人脸识别.在ORL库、FERET子库和PIE子库上的大量识别实验充分表明了完备鉴别保局投影算法的性能优于线性鉴别分析、保局投影和鉴别保局投影等现有的子空间人脸识别算法,验证了算法的有 效性.  相似文献   

15.
Maximal local interclass embedding with application to face recognition   总被引:1,自引:0,他引:1  
Dimensionality reduction of high dimensional data is involved in many problems in information processing. A new dimensionality reduction approach called maximal local interclass embedding (MLIE) is developed in this paper. MLIE can be viewed as a linear approach of a multimanifolds-based learning framework, in which the information of neighborhood is integrated with the local interclass relationships. In MLIE, the local interclass graph and the intrinsic graph are constructed to find a set of projections that maximize the local interclass scatter and the local intraclass compactness simultaneously. This characteristic makes MLIE more powerful than marginal Fisher analysis (MFA). MLIE maintains all the advantages of MFA. Moreover, the computational complexity of MLIE is less than that of MFA. The proposed algorithm is applied to face recognition. Experiments have been performed on the Yale, AR and ORL face image databases. The experimental results show that owing to the locally discriminating property, MLIE consistently outperforms up-to-date MFA, Smooth MFA, neighborhood preserving embedding and locality preserving projection in face recognition.  相似文献   

16.
任迎春  王志成  陈宇飞  赵卫东  彭磊 《计算机科学》2016,43(8):277-281, 296
针对稀疏保持投影算法在特征提取过程中无监督和L1范数优化的计算量较大的问题,提出一种基于流形学习和稀疏约束的快速特征提取算法。首先通过逐类PCA构造级联字典,并基于该字典通过最小二乘法快速学习稀疏保持结构;其次构造用于描述不同子流形距离的局部类间散度函数;然后整合所学习到的稀疏表示信息和局部类间散度信息以达到既考虑判别效率又保持稀疏表示结构的目的;所提算法最终转化为一个求解广义特征值问题。在公共人脸数据库(Yale,ORL和Extended Yale B)中 的 测试结果验证了该方法的可行性和有效性。  相似文献   

17.
Locality preserving embedding for face and handwriting digital recognition   总被引:1,自引:1,他引:0  
Most supervised manifold learning-based methods preserve the original neighbor relationships to pursue the discriminating power. Thus, structure information of the data distributions might be neglected and destroyed in low-dimensional space in a certain sense. In this paper, a novel supervised method, called locality preserving embedding (LPE), is proposed to feature extraction and dimensionality reduction. LPE can give a low-dimensional embedding for discriminative multi-class sub-manifolds and preserves principal structure information of the local sub-manifolds. In LPE framework, supervised and unsupervised ideas are combined together to learn the optimal discriminant projections. On the one hand, the class information is taken into account to characterize the compactness of local sub-manifolds and the separability of different sub-manifolds. On the other hand, at the same time, all the samples in the local neighborhood are used to characterize the original data distributions and preserve the structure in low-dimensional subspace. The most significant difference from existing methods is that LPE takes the distribution directions of local neighbor data into account and preserves them in low-dimensional subspace instead of only preserving the each local sub-manifold’s original neighbor relationships. Therefore, LPE optimally preserves both the local sub-manifold’s original neighborhood relationships and the distribution direction of local neighbor data to separate different sub-manifolds as far as possible. The criterion, similar to the classical Fisher criterion, is a Rayleigh quotient in form, and the optimal linear projections are obtained by solving a generalized Eigen equation. Furthermore, the framework can be directly used in semi-supervised learning, and the semi-supervised LPE and semi-supervised kernel LPE are given. The proposed LPE is applied to face recognition (on the ORL and Yale face databases) and handwriting digital recognition (on the USPS database). The experimental results show that LPE consistently outperforms classical linear methods, e.g., principal component analysis and linear discriminant analysis, and the recent manifold learning-based methods, e.g., marginal Fisher analysis and constrained maximum variance mapping.  相似文献   

18.
针对人脸识别问题,提出了一种中心近邻嵌入的学习算法,其与经典的局部线性嵌入和保局映射不同,它是一种有监督的线性降维方法。该方法首先通过计算各类样本中心,并引入中心近邻距离代替两样本点之间的直接距离作为权系数函数的输入;然后再保持中心近邻的几何结构不变的情况下把高维数据嵌入到低维坐标系中。通过中心近邻嵌入学习算法与其他3种人脸识别方法(即主成分分析、线形判别分析及保局映射)在ORL、Yale及UMIST人脸库上进行的比较实验结果表明,它在高维数据低维可视化和人脸识别效果等方面均较其他3种方法取得了更好的效果。  相似文献   

19.
Feature extraction has always been an important step in face recognition, the quality of which directly determines recognition result. Based on making full use of advantages of Sparse Preserving Projection (SPP) on feature extraction, the discriminant information was introduced into SPP to arrive at a novel supervised feather extraction method that named Uncorrelated Discriminant SPP (UDSPP) algorithm. The obtained projection with the method by sparse preserving intra-class and maximizing distance inter-class can effectively express discriminant information, while preserving local neighbor relationship. Moreover, statistics uncorrelated constraint was also added to decrease redundancy among feature vectors so as to obtain more information as possible with little vectors as possible. The experimental results show that the recognition rate improved compared with SPP. The method is also superior to recognition methods based on Euclidean distance in processing face database in light.  相似文献   

20.
提出了一种基于流形保持投影的驾驶疲劳识别方法。利用光流技术计算人脸皮层的运动速度,并以此作为疲劳特征;为了有效地进行疲劳特征降维,在保局投影的基础上,将数据的非近邻信息引入目标函数中,提出了流形保持投影方法, 有效地保持了疲劳数据的局部流形结构和全局流形结构,同时利用格拉姆-施密特正交化过程解决了保局投影非正交问题。实验结果表明该方法具有很好的识别效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号