首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
基于模拟退火的粒子群算法求解约束优化问题   总被引:7,自引:1,他引:7  
针对复杂约束优化问题,提出一种基于模拟退火(SA)的粒子群(PSO)算法(SAPSO)。该算法使粒子的飞行无记忆性,结合模拟退火算法重新生成停止进化粒子的位置,增强了全局搜索能力。同时采用双群体搜索机制,一个群体保存具有可行解的粒子,用SAPSO算法使粒子逐步搜索到最优可行解;另一个群体保存具有不可行解的粒子,并且可行解群体以一定的概率接受具有不可行解的粒子,有效地维持了群体的多样性。仿真结果表明:该算法能够快速准确地找到位于约束边界上(或附近)的最优解,具有较好的稳定性。  相似文献   

2.
粒子群算法的全局勘探能力和局部开发能力的不协调往往会导致算法收敛不精、陷入早熟。针对上述问题,提出了基于动态种群的双重学习粒子群优化算法(DP-DLPSO)。首先将粒子种群划分为勘探子种群和开发子种群,让两个子种群以不同的学习机制引导粒子运动,粒子处于寻优期间时,子群体间无信息交流,如果开发种群陷入局部最优也不会影响到勘探种群的寻优能力;其次,采用动态种群思想,勘探种群将会把好的粒子输送到开发种群中去,增加开发种群中有效解的几率,提高粒子的收敛精度;最后,对开发种群采用高斯扰动策略以提高粒子跳出局部最优的能力。将DP-DLPSO与5个改进粒子群算法进行比较,实验结果表明DP-DLPSO在收敛精度和收敛速度上具有更大的优势。  相似文献   

3.
基于免疫和进化扩散算法的全局优化问题求解算法   总被引:2,自引:1,他引:1  
在求解全局优化问题时,通常免疫算法、进化扩散算法分别在局部搜索和全局搜索方面表现较弱。针对这一情况,基于免疫和进化扩散算法,提出了一个免疫-进化扩散算法。该算法结合了免疫和进化扩散两种算法的优点,一方面通过引入基于共享机制的小生境算法,保持了群体的多样性,另一方面通过提出一种步长参数动态调整策略,提高了算法效率。实验结果表明,在给定精度下,该算法的效率和稳定性都明显优于Tsui的进化扩散算法和Ingber的自适应模拟退火算法。最后对步长参数动态调整策略进行了分析。  相似文献   

4.
提出一种自适应混合文化蜂群算法求解连续空间优化问题。算法中群体空间采用最优觅食理论改进群体更新方式;信念空间通过云模型算法和最优排序差分变异策略对知识进行更新;利用混沌算法和反向学习算法进化外部空间;3种空间通过自适应的影响操作来实现知识的交换。典型复杂函数测试表明,该算法具有很好的收敛精度和计算速度,特别适宜于多峰值函数寻优。  相似文献   

5.
微粒群算法(简称PSO算法)是一种新型的进化计算方法,已在许多领域得到了非常成功的应用。本以约束优化问题为对象,首先介绍了采用罚函数法将约束优化问题化为无约束优化问题,和将约束优化问题转化为minmax问题,然后对无约束优化问题和minmax问题,采用PSO算法进行进化求解;在此基础上,以目标函数和约束满足分别为优化目标提出了一种双微粒群的PSO算法。仿真实验结果验证了方法的正确性与有效性。  相似文献   

6.
针对标准蚁群算法在求解旅行商问题(TSP)时存在收敛速度慢,易陷入局部最优等缺陷,提出一种自适应蚁群优化算法.该算法设计了一种实时监测机制和一种新的搜索方向,实时监测机制可以让算法跳出局部最优值,并且当算法跳出局部最优值时,沿着新的搜索方向搜索,可以加快算法收敛到全局最优.通过对典型的TSP实例仿真实验,与基本蚁群算法、MMAS算法相对比,结果显示该算法在克服早熟现象和收敛速度方面有很大的优越性.  相似文献   

7.
果蝇优化算法(FOA)是一种新的全局优化算法,其灵感源于果蝇的嗅觉和视觉觅食行为,该算法具有很强的连续优化问题的解决能力。然而,FOA存在算法候选解不能取负值、种群多样性差、局部搜索能力弱等缺点。为了克服上述不足,该文提出了一种基于多策略进化和动态更新种群最优信息的改进果蝇优化算法(MDFOA)。算法引入了一种有效的多策略候选解生成方法和一个新的控制参数,较好的平衡了算法的全局搜索和局部搜索能力。此外,还设计了全局最优信息的实时更新机制,提高了算法的收敛速度,采用29个复杂的基准测试函数来检验该算法的有效性。实验结果表明,该算法的优化性能优于FOA、6种改进的FOA及另外两种智能优化算法。  相似文献   

8.
改进粒子群优化算法求解旅行商问题   总被引:15,自引:0,他引:15  
提出了一种改进粒子群学习算法,在改进的算法中,粒子不仅根据自身和同伴中最好的个体调整自己的飞行速度,而且按照一定的概率向其他个体学习。这种强化后的学习行为更符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解。同时借鉴单点调整算法思想,提出了调整因子和调整序概念用以重构粒子群算法。最后,用改进后的粒子群算法求解旅行商问题,数字仿真表明了算法的有效性。  相似文献   

9.
针对标准微粒群优化算法(PSO)在全局优化过程中容易陷入局部极值的问题,分析了标准微粒群优化算法早熟收敛的原因,提出了一种新的基于不同进化模型的双群交换技术的改进微粒群优化算法.该方法将微粒分成两个大小相同的分群,其中第一分群采用标准PSO模型进化,第二分群采用cognition only模型进化.两个分群每选代一次后,将第一分群的适应值最差的微粒与第二分群的适应值最优的微粒进行交换,以提高种群的多样性,改善算法的收敛性.与其它双群算法相比,该算法概念简单,程序实现容易.与标准微粒群优化算法相比.全局寻优能力更强,函数测试结果表明,提出的双群交换微粒群优化算法的收敛性能明显优于标准PSO算法.  相似文献   

10.
求解约束多目标优化问题的Agent进化算法   总被引:1,自引:0,他引:1  
针对目前Agent进化算法难以处理含约束多目标优化的问题,把标准化的约束违反程度作为一个优化目标,从而对Agent所具有的能量产生影响;设置了最优解集和最优可行解集两个外部存储集,以便在寻优过程中保持Agent群体的多样性;对可行解以及约束违反程度小的Agent进行局部爬山操作,更加有利于寻找最优可行解。将算法应用于数值实例和焊接梁的设计优化问题中,表明该算法既保持了种群的多样性,又能够快速收敛。  相似文献   

11.
通过对弧相容算法AC-4的研究,提出了基于AC-4的动态值启发式约束满足问题求解算法MAC-DMSV。算法充分利用AC-4在初始化阶段建立的计数器信息,选择计数最大者为优先实例化的值。将此值启发式加入MAC算法之中,在MAC的相容性检查时,更新计数器的值,实现了动态值启发式。实验结果表明,MAC-DMSV算法比MAC和BT+MPAC算法具有更高的求解效率。  相似文献   

12.
为了克服免疫算法在优化高维多峰函数时存在的早熟收敛问题,提出一种高效的混合免疫进化算法.动态克隆扩张、基于学习机制的超变异和多母体交叉是该算法的主要特点.同时,提出了一种算法性能评价准则,以比较不同算法在优化高维函数时的性能.在实验部分,首先使用经典测试函数测试了混合免疫进化算法的性能;然后,分别在不同的评估次数下比较了自适应差分进化、基本免疫算法和混合免疫进化算法,结果表明免疫进化算法在求解精度、稳定性等方面均明显优于前两种算法.  相似文献   

13.
针对粒子群优化算法应用于约束优化问题时易陷入局部极小值的问题,提出了一种改进的粒子群优化算法. 该算法综合了约束优化问题的目标函数值和约束函数的违反度值作为粒子群优化算法的双适应度值, 采用了双适应值动态判断粒子群优化算法中粒子的优劣. 违反度值的计算引入了自适应加权系数,相应地提出了调整各权系数的自适应策略, 并改进了粒子群优化算法的粒子竞争选择策略,拓展了粒子群优化算法的单适应值的应用范围.应用约束自适应粒子群优化算法实现了城市水厂的节能优化调度. 结果表明, 该算法收敛速度快且结果可靠. 粒子群优化算法为解决工程约束优化问题提供了一条可行途径.  相似文献   

14.
A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle. The dynamic process of artificial immune response with operators such as immune cloning, multi-scale variation and gradient-based diversity was modeled. Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens, a sigmoid model that can clearly describe clonal proliferation was proposed. In addition, with the introduction of multiple populations and multi-scale variation, the algorithm can well maintain the population diversity during the dynamic searching process. Unlike traditional artificial immune algorithms, which require randomly generated cells added to the current population to explore its fitness landscape, AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments. Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks. Preliminary experiments show that AIDE can maintain high population diversity during the search process, simultaneously can speed up the optimization. Thus, AIDE is useful for the optimization of dynamic environments.  相似文献   

15.
To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.  相似文献   

16.
基于微分进化(DE)的多目标进化算法(MOEA)在求解过程中存在着退化现象,导致算法的收敛性无法保证,同时也降低了求解的效率。针对这一问题,分析了算法中存在的两种退化现象,提出了针对两种退化现象相应的解决办法,最后给出了一种新的基于DE的MOEA。新算法克服了已有算法中存在的退化现象,保证了算法的收敛性和解的多样性,有效地提高了算法的效率,通过数值实验验证了新算法的可行性和有效性。  相似文献   

17.
针对在优化高维函数时,细菌觅食优化算法性能不佳的情况,提出了一种自适应细菌觅食优化算法.将固定的趋化步长改进为非线性递减的自适应游动步长,提高了算法的局部搜索能力;引入维度自适应学习算法,对每个趋化周期内得到的当前最优细菌进行维度自适应学习一次,提高了解的精度和搜索效率;将精英细菌作为Tent混沌映射的初始点对符合迁徙条件的细菌进行位置初始化,加快了算法的收敛速度.仿真结果表明,文中提出的算法在解的精度和收敛速度等方面均表现更优,具有更高的效率.  相似文献   

18.
为了解决进化算法在求解全局优化时易陷入局部极小点的问题,引入了平滑函数,利用目前最好点来消除比其差的局部极小点;设计了适合该平滑函数的杂交算子,利用平滑函数与种群的关系寻找实值函数的下降方向。设计了一个变异算子,增加了种群的多样性。在此基础上,设计了一个求解全局优化问题的高效进化算法,并从理论上证明了其全局收敛性,从数值上验证了其有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号