首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design and preliminary results from a prototype of a multifilter based electron temperature diagnostic for the TJ-II stellarator are presented. The diagnostic consists of four photodiodes with filters of different thicknesses to determine the electron temperature in a wide variety of plasma compositions, thanks to the set of six different signal-pairs ratios available. The impurity transport code IONEQ, the TJ-II soft x-ray tomography, and the VUV survey diagnostics give the necessary information to assess the proposed diagnostic reliability. In parallel, a vacuum-compatible multichannel electronic board has been designed for a future linear array to determine electron temperature profiles in high-density plasmas.  相似文献   

2.
A highly sensitive imaging Thomson scattering system was developed for low temperature (0.1-10 eV) plasma applications at the Pilot-PSI linear plasma generator. The essential parts of the diagnostic are a neodymium doped yttrium aluminum garnet laser operating at the second harmonic (532 nm), a laser beam line with a unique stray light suppression system and a detection branch consisting of a Littrow spectrometer equipped with an efficient detector based on a "Generation III" image intensifier combined with an intensified charged coupled device camera. The system is capable of measuring electron density and temperature profiles of a plasma column of 30 mm in diameter with a spatial resolution of 0.6 mm and an observational error of 3% in the electron density (n(e)) and 6% in the electron temperature (T(e)) at n(e) = 4 x 10(19) m(-3). This is achievable at an accumulated laser input energy of 11 J (from 30 laser pulses at 10 Hz repetition frequency). The stray light contribution is below 9 x 10(17) m(-3) in electron density equivalents by the application of a unique stray light suppression system. The amount of laser energy that is required for a n(e) and T(e) measurement is 7 x 10(20)n(e) J, which means that single shot measurements are possible for n(e)>2 x 10(21) m(-3).  相似文献   

3.
In this article, extension of the He beam diagnostic, which is routinely applied in fusion devices for the characterization of the edge electronic parameters-ne and Te-and their profile, to the measurement of ion temperature and plasma rotation is proposed. The theoretical background for these new applications is reviewed and examples of their use in TJ-II are provided. Also, the shortcomings and their possible solutions are addressed. Finally, the field of application of the technique to other beam-based diagnostics is discussed.  相似文献   

4.
An integrated data analysis system based on Bayesian inference has been developed for the TJ-II stellarator. It reconstructs the electron density profile at a single time point, using data from interferometry, reflectometry, Thomson scattering, and the Helium beam, while providing a detailed error analysis. In this work, we present a novel analysis of the ambiguity inherent in profile reconstruction from reflectometry and show how the integrated data analysis approach elegantly resolves it. Several examples of the application of the technique are provided, in both low-density discharges with and without electrode biasing, and in high-density discharges with an (L-H) confinement transition.  相似文献   

5.
A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n(0) = 1.5 × 10(18) m(-3) and a low beam divergence of ±1° simultaneously, achieving a poloidal resolution of Δ(poloidal) = 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of Δ(radial) = 2 mm and a maximum temporal resolution of Δt ? 2 μs (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.  相似文献   

6.
Electron micrographs of two-dimensional microcrystals of a complex of an avian influenza virus neuraminidase and an antibody Fab fragment, termed 32/3, have been recorded using the spot-scan method of imaging. The crystals have a large unit cell (159.5 A x 159.5 A x 130.5 A) and a high solvent content (approximately 71% by volume) and are a challenging specimen for testing the spot-scan methodology. Crystalline order was preserved to beyond 4 A resolution as demonstrated by electron diffraction, using an embedding medium of a mixture of glucose and neutral potassium phosphotungstate. Using a Philips C400 computer control system interfaced to an EM420 electron microscope, and with the inclusion of additional software in the system, we have been able to record micrographs at low temperature with a relatively narrow (1500 A diameter) moving beam. There is evidence that the use of such a spot-scan beam reduces the effects of beam-induced specimen motion on the quality of micrographs. Conventional low-dose "flood-beam" images showed good isotropic optical diffraction in only 15% of cases whereas 30% of spot-scan images showed good diffraction. The best flood-beam images gave phases to only 15 A resolution after computer processing, whereas the best spot-scan images gave phases to 7 A resolution. Electron diffraction patterns were also recorded at low temperature, and the resulting diffraction amplitudes combined with phases from spot-scan images to yield a projection map of the structure. A 7 A resolution projection map of the complex is presented, and is compared with the projection map of the same avian influenza neuraminidase complexed with a different monoclonal Fab fragment, NC41, which has been solved to high resolution by X-ray diffraction.  相似文献   

7.
In addition to the production of secondary electrons and secondary ions, characteristic x‐ray emission may also result from ion/solid interactions and is the basis for the well‐known analysis technique referred to as particle‐induced x‐ray emission. Characteristic x‐rays may be emitted by either bombardment by MeV protons or heavy ions of a few keV. The advantage to heavy ions is that the x‐ray yield is confined to the region near the surface defined by the collision cascade. An advantage of heavy ion‐induced x‐ray emission over electron‐induced x‐ray emission is that the Bremsstrahlung is potentially orders of magnitude lower. Thus, ion‐induced x‐ray spectra may provide for superior peak‐to‐noise ratios, and there‐fore, offers trace element sensitivity compared with elec‐tron‐induced x‐ray emission. In addition, the near surface ion/solid interactions also allow for the possibility of surface analysis or depth profiling. A Dual Beam instrument was used to collect focused ion beam‐induced x‐ray (FIBIX) spectra. The acquisition of characteristic x‐rays from targets via FIBIX is demonstrated and compared with scanning electron microscopy‐induced x‐ray energy dispersive spectroscopy spectra and is consistent with the theory described above.  相似文献   

8.
In a previous paper, a new technique was introduced to determine the chemistry of crystallographically well‐defined planar defects (such as straight interfaces, grain boundaries, twins, inversion or antiphase domain boundaries) in the presence of homogeneous solute segregation or selective doping. The technique is based on a linear least‐squares fit using series of analytical (electron energy‐loss or energy‐dispersive X‐ray) spectra acquired in a transmission electron microscope that is operated in nano‐probe mode with the planar defect centred edge‐on. First, additional notes on the use of proper k‐factors and determination of Gibbsian excess segregation are given in this note. Using simulated data sets, it is shown that the linear least‐squares fit improves both the accuracy and the robustness to noise beyond that obtainable by independently repeated measurements. It is then shown how the method originally developed for a stationary nano‐probe mode in transmission electron microscopy can be extended to a focused electron beam that scans a square region in scanning transmission electron microscopy. The necessary modifications to scan geometry and corresponding numerical evaluation are described, and three different practical implementations are proposed.  相似文献   

9.
The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (~100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.  相似文献   

10.
The performance of a cubical permanent magnet generated line-cusp ion source has been investigated for use with neutral beam injectors. This source has been operated with discharge currents greater than 500 A and ion current densities higher than 400 mA/cm2 at the extraction grid. The uniformity of the density profile across the extraction area is found to be dependent on the gas pressure. By using a fast Langmuir probe sweeping circuit, the electron temperature and the plasma density and potential have been analyzed for different discharge powers and gas pressures. The heat load on the plasma grid when it is electrically floating or connected to the negative cathode has been compared calorimetrically. The use of lanthanum hexaboride and impregnated oxide cathodes have been investigated for the purpose of long pulse operation. The phenomenon of mode flipping is found to occur quite frequently during a discharge with these magnetic-field-free cathodes. Species composition as a function of discharge power and chamber length is measured by a mass spectrometer.  相似文献   

11.
目的:基于衍射光栅分合束元件的软X射线Mach-Zehnder干涉系统在惯性约束聚变,X射线激光等领域都有重要的应用前景。针对该干涉系统的特点设计、制作了工作波长为13.9nm的矩形分合束光栅。方法:利用全息曝光-离子束刻蚀工艺制作了特定参数的矩形光栅,利用长行程面型仪(LTP)对其线密度进行了测量,利用原子力显微镜测量其槽深与占宽比,利用国家同步辐射实验室(NSRL)U27实验站测量其衍射效率。结果:该矩形光栅的参数为线密度1000l/mm,槽深13±0.2nm,占宽比0.4±10%,Au膜厚度为40±0.5nm;在工作波长为13.9nm,81.2°入射时,其0级与-1级衍射光衍射效率乘积的最大值为8.6%,同时0级与-1级衍射效率亦接近,约为27%和30%。结论:测量结果充分证明矩形光栅作为13.9nm激光的分合束元件是能够获得高分合束效率(>7%),且矩形分合束元件易于制作。  相似文献   

12.
A high-flux beam source of fast neutral helium has been constructed by extending the designs of previous authors. The source is a dc or pulsed electric discharge in an expanding gas nozzle. The beam produced has a flux on the order of 10(15) atoms/s sr and a mean velocity on the order of 10(7) cm/s. The composition of the beam has been determined by the use of particle detectors and by the observation of the excitation of certain target gases. An upper bound of 3.7 x 10(-5) has been estimated for the He(2(3)S(1))/He((1)S(0))beam density ratio and a value of 0.2 found for the He(+)/He(1(1)S(0)) beam density ratio.  相似文献   

13.
Impurity ion temperature and velocity profiles are obtained across plasmas in the TJ-II stellarator by performing charge-exchange recombination spectroscopy with a diagnostic neutral beam injector. For this, a tridirectional (toroidal plus two poloidal opposing views) multichannel spectroscopic diagnostic, incorporating 12-way fiber arrays, a compact f/1.8 spectrograph, and a back-illuminated CCD, permits Doppler line shifts and widths (of the C VI line at 529.05 nm) to be determined with 1-2 cm spatial resolution. For good photon counting statistics under Li-coated wall conditions, 600?μm diameter fibers collect and transmit light to curved 100?μm wide input slits. When calibrated with a neon pencil lamp this entrance slit width results in a non-Gaussian instrumental function that, if not handled correctly, can result in systematically underestimated impurity temperatures. Here we develop and present correction factors for this effect for a range of conditions.  相似文献   

14.
We present a method to infer the approximate species mixture of neutral beam sources which accelerate positive hydrogen ions. An idealized neutral beam is specified by the accelerating voltage, the neutralizer thickness (molecules of hydrogen per cm2), and the currents of extracted H+, H2+, and H3+. These currents define two independent ratios which lie within a narrow parameter region and which can be determined by two independent measurements downstream from the source. The two suitable parameters are (1) the ratio of neutral beam to total beam power; and (2) the ratio of hydrogen produced by the neutral beam in the target volume to the hydrogen produced by the total beam. We give experimental results from the 10 x 10-cm2 120-KeV test stand at the Lawrence Berkeley Laboratory.  相似文献   

15.
We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n(e) in the pulse mode is higher and the electron temperature T(e) is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecular or cluster ions.  相似文献   

16.
The results from upgrade of an ionization beam profile monitor (IBPM) are presented. The IBPM consists of a conventional capacitor that extracts the ionization products of the residual gas and analyzing capacitors. The main objective of this upgrade was to create a device with uniform spatial resolution. For this purpose, an additional difference of potentials, the ramping of which allows the beam cross section to be scanned, is applied between the capacitors of the monitor, while the electric fields in the capacitors themselves remain constant. Two IBPMs have been developed as a result of the facilitys upgrade: an IBPM for on-line monitoring of the vertical and horizontal beam current distributions in the beam line in an area of 8 × 8 cm2 with a uniform 1-mm resolution, and an IBMP for detailed beam profile monitoring with a uniform resolution of 1 × 1 mm2 over the scanning region. It was established experimentally that the proposed scanning technique provides good results in beam profile measurements when the ion component of the ionized residual gas is extracted; for the electron component, the result is much worse.__________Translated from Pribory i Tekhnika Eksperimenta, No. 2, 2005, pp. 61–66.Original Russian Text Copyright © 2005 by Teterev, Phi Thanh Huong.  相似文献   

17.
A high spatial resolution two color [CO(2), λ=10.6?μm/Nd:YAG (Nd:YAG denotes neodymium-doped yttrium aluminum garnet), and λ=1.064?μm] expanded-beam multichannel heterodyne interferometer has been installed on the TJ-II stellarator. Careful design of the optical system has allowed complete control on the evolution of both Gaussian beams along the interferometer, as well as the evaluation and optimization of the spatial resolution to be expected in the measurements. Five CO(2) (measurement) channels and three Nd:YAG (vibration compensation) channels have been used to illuminate the plasma with a probe beam of 100 mm size. An optimum interpolation method has been applied to recover both interferometric phasefronts prior to mechanical vibration subtraction. The first results of the installed diagnostic are presented in this paper.  相似文献   

18.
A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).  相似文献   

19.
The edge of the reversed field pinch experiment RFX-mod (R=2?m,?a=0.46?m) is characterized by a complex magnetic topology and strong pressure gradients. A set of fast spectroscopic diagnostics has been designed to characterize both main plasma edge parameters and turbulence, including coherent structures (blobs) and radial profiles of the thermodynamic variables. Measurements of the edge radial profiles of electron density (n(e)), temperature (T(e)), and pressure (P(e)) are obtained by a thermal helium beam diagnostic, which locally measures the ratios of the spectral lines emitted by a neutral He cloud puffed into hydrogen plasma discharges. A gas puff imaging system allows the high frequency (1 MHz bandwidth) measurement of the fluctuations of He?I emissivity in the same positions. The system measures both the intermittent behavior of the edge turbulence and n(e), T(e), and P(e) profiles of the corresponding coherent structures, with a resolution down to 6?μs. The optical diagnostics are complemented by a set of triaxial magnetic coils to simultaneously characterize the edge magnetic field.  相似文献   

20.
An upgraded spectral motional Stark effect diagnostic has been installed on the gas-dynamic trap (GDT) experiment to enable spatially resolved measurement of |B|. A new low-noise charge-coupled device detector, combined with enhancements of the diagnostic neutral beam, allows single-shot profile measurements. Previously only single-point motional Stark effect measurements were possible, and detector noise severely limited measurement precision, requiring multi-shot averaging. The plasma pressure profile in GDT is derived from the measured diamagnetic modification of |B| and used to examine the conditions of stable plasma confinement at high plasma pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号