首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Loke D  Shi L  Wang W  Zhao R  Yang H  Ng LT  Lim KG  Chong TC  Yeo YC 《Nanotechnology》2011,22(25):254019
Phase-change random access memory cells with superlattice-like (SLL) GeTe/Sb(2)Te(3) were demonstrated to have excellent scaling performance in terms of switching speed and operating voltage. In this study, the correlations between the cell size, switching speed and operating voltage of the SLL cells were identified and investigated. We found that small SLL cells can achieve faster switching speed and lower operating voltage compared to the large SLL cells. Fast amorphization and crystallization of 300 ps and 1 ns were achieved in the 40 nm SLL cells, respectively, both significantly faster than those observed in the Ge(2)Sb(2)Te(5) (GST) cells of the same cell size. 40 nm SLL cells were found to switch with low amorphization voltage of 0.9 V when pulse-widths of 5 ns were employed, which is much lower than the 1.6 V required by the GST cells of the same cell size. These effects can be attributed to the fast heterogeneous crystallization, low thermal conductivity and high resistivity of the SLL structures. Nanoscale PCRAM with SLL structure promises applications in high speed and low power memory devices.  相似文献   

2.
3.
Following the earlier investigation of recrystallization of aluminium by Bellier and Doherty [1] by transmission Kossel diffraction, the details of the nucleation process were studied by transmission electron microscopy and Kikuchi electron diffraction. This showed that nucleation appeared to occur via a sub-grain coalescence process that occurred selectively at deformation bands and at deformation band, grain boundary junctions. Nucleation occurred only at grain boundaries and at deformation bands. The condition for continued growth, of enlarged sub-grains of length 2L, along the grain boundary L>2r( s/ g) where s is the sub-boundary energy and g the grain-boundary energy, was found to be obeyed. The values of the stored energy calculated from the measured sub-grain sizes and misorientations were less than the reported experimental value, indicating that in as-deformed aluminium the dislocation arrays in the sub-boundaries may not have the lowest energy structure assumed in the calculation.  相似文献   

4.
5.
The ultrafast (sub-nanosecond) magnetization dynamics of ferromagnetic thin films and elements that find application in spintronic devices is reviewed. The major advances in the understanding of magnetization dynamics in the two decades since the discovery of giant magnetoresistance and the prediction of spin-transfer torque are discussed, along with the plethora of new experimental techniques developed to make measurements on shorter length and time scales. Particular consideration is given to time-resolved measurements of the magneto-optical Kerr effect, and it is shown how a succession of studies performed with this technique has led to an improved understanding of the dynamics of nanoscale magnets. The dynamics can be surprisingly rich and complicated, with the latest studies of individual nanoscale elements showing that the dependence of the resonant mode spectrum upon the physical structure is still not well understood. Finally, the article surveys the prospects for development of high-frequency spintronic devices and highlights areas in which further study of fundamental properties will be required within the coming decade.  相似文献   

6.
Ensembles of iron nanocrystals up to 25 nm in diameter embedded in SiO(2) were found to exhibit an ultrafast magnetic response to a transient out-of-plane magnetic field. The response time varies as a function of in-plane bias magnetic field with the fastest rise times, as short as 26 ps, observed for both zero and high bias fields (140 kA/m). Analytical modeling and micromagnetic simulations confirm that magnetostatic interactions between nanoparticles play an important role in the dynamic response.  相似文献   

7.
We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application of quantum-dot amplifiers in e.g. amplification of signals in a telecommunications system. We also review experiments on pulse propagation control and show the possibility to slow down or speed up 170 fs pulses in a quantum-dot based device.  相似文献   

8.
9.
Abstract

Using tightly focused ultrashort laser pulses allows the direct writing of three-dimensional photonic structures in different glasses and also crystalline media. One of the main drawbacks of this technology is, however, the limited writing speed achieved so far. In this paper we shall review our recent advances in the direct writing of three-dimensional integrated-optical devices and discuss a new approach using a fibre-based femtosecond laser system producing 300 fs pulses with pulse energies of 0.6 μJ at 2 MHz repetition rate. Using this laser system we fabricated low-loss waveguides (less than 0.5 dBcm?1) at writing speeds of 100 mms?1 for the first time. The influence of the writing speed on the produced structures as well as their optical properties will be discussed in detail.  相似文献   

10.
The dynamics of free electron-hole pairs and excitons in GaAs-AlGaAs-GaAs core-shell-skin nanowires is investigated using femtosecond transient photoluminescence spectroscopy at 10 K. Following nonresonant excitation, a bimolecular interconversion of the initially generated electron-hole plasma into an exciton population is observed. This conducting-to-insulating transition appears to occur gradually over electron-hole charge pair densities of 2-4 × 10(16) cm(-3) . The smoothness of the Mott transition is attributed to the slow carrier-cooling during the bimolecular interconversion of free charge carriers into excitons and to the presence of chemical-potential fluctuations leading to inhomogeneous spectral characteristics. These results demonstrate that high-quality nanowires are model systems for investigating fundamental scientific effects in 1D heterostructures.  相似文献   

11.
A simple phase-field model is used to address anisotropic eutectic freezing on the nanoscale in two (2D) and three dimensions (3D). Comparing parameter-free simulations with experiments, it is demonstrated that the employed model can be made quantitative for Ag–Cu. Next, we explore the effect of material properties and the conditions of freezing on the eutectic pattern. We find that the anisotropies of kinetic coefficient and the interfacial free energies (solid–liquid and solid–solid), the crystal misorientation relative to pulling, the lateral temperature gradient play essential roles in determining the eutectic pattern. Finally, we explore eutectic morphologies, which form when one of the solid phases are faceted, and investigate cases, in which the kinetic anisotropy for the two solid phases is drastically different.  相似文献   

12.
In this work, pH dependent evolution of tungsten oxide (WO3) nanostructures is being reported along with physical characteristics. The synthesis was carried out via an inexpensive solvothermal cum chemical reduction route, with sodium tungstate (Na2WO4) and cetyl trimethyl ammonium bromide (C19H42NBr) as main reactants. The X-ray diffraction, together with transmission electron microscopic studies have revealed formation of regular polyhedral nanocrystalline structures and fractals as one goes from higher pH (= 5·5) to lower pH (= 2) values. The average crystallite size, as calculated through Williamson–Hall plots, was varied within 2·8–6·8 nm for different pH samples. Fourier transform infrared spectroscopy reveals in-plane bending vibration δ (W–OH), observable at ∼1630 cm − 1 and strong stretching ν (W–O–W) located at ∼814 cm − 1. Raman spectroscopy has divulged WO3 Raman active optical phonon modes positioned at ∼717 and 805 cm − 1. The thermochromic and photochromic properties of the nanoscale WO3 sample prepared at pH = 5·5, are also highlighted.  相似文献   

13.
Four-dimensional (4D) imaging during structural changes are reported here using ultrafast electron microscopy (UEM). For nanostructures, the phase transition in the strongly correlated material vanadium dioxide is our case study. The transition is initiated and probed in situ, in the microscope, by a femtosecond near-infrared and electron pulses (at 120 keV). Real-space imaging and Fourier-space diffraction patterns show that the transition from the monoclinic (P21/c) to tetragonal (P42/mnm) structure is induced in 3 +/- 1 ps, but there exists a nonequilibrium (metastable) structure whose nature is determined by electronic, carrier-induced, structural changes. For the particles studied, the subsequent recovery occurs in about 1 ns. Because of the selectivity of excitation from the 3d parallel-band, and the relatively low fluence used, these results show the critical role of carriers in weakening the V4+-V4+ bonding in the monoclinic phase and the origin of the nonequilibrium phase. A theoretical two-dimensional (2D) diffusion model for nanoscale materials is presented, and its results account for the observed behavior.  相似文献   

14.
We report on rational synthesis and optical characteristics of highly crystallined ZnO nanorods which were grown by a facile chemical vapor transport method. Temperature-dependent photoluminescence spectra of as-fabricated ZnO nanorods are dominated by near-band-edge emission with a characteristic fine structure due to high crystallinity. Furthermore, the recombination emission involving carrier dynamics of near-band-edge emission in ZnO nanorods was systematically investigated by temperature-dependent time-resolved photoluminescence spectroscopy. Recombination peaks pertaining to the exciton emissions are monitored and resolved in both temporal and spatial regimes.  相似文献   

15.
Ultrafast dynamics of surface-enhanced Raman scattering (SERS) was investigated at cleaved graphite surfaces bearing deposited gold (Au) nanostructures (~10 nm in diameter) by using sensitive pump-probe reflectivity spectroscopy with ultrashort (7.5 fs) laser pulses. We observed enhancement of phonon amplitudes (C═C stretching modes) in the femtosecond time domain, considered to be due to the enhanced electromagnetic (EM) field around the Au nanostructures. Finite-difference time-domain (FDTD) calculations confirmed the EM enhancement. The enhancement causes drastic increase of coherent D-mode (40 THz) phonon amplitude and nanostructure-dependent changes in the amplitude and dephasing time of coherent G-mode (47 THz) phonons. This methodology should be suitable to study the basic mechanism of SERS and may also find application in nanofabrication.  相似文献   

16.
Egger S  Ilie A  Machida S  Nakayama T 《Nano letters》2007,7(11):3399-3404
We succeeded in integrating individual, pre-existing nanostructures into functional devices using ultrahigh vacuum dynamic nanostenciling and show working devices based on single-walled carbon nanotubes, a benchmark nanomaterial, and porphyrin J-aggregates, a "soft" supramolecular nanomaterial. Nanostructures are first located via atomic force microscopy, while device elements are added step by step, with an achieved positional accuracy of 20 nm, using a shadow mask assembly that moves while being exposed to evaporated material. Electronic transport, potentiometry, and scanning Kelvin probe were used for control at any fabrication stage and were available in situ. Such complex fabrication/characterization capabilities, applicable repeatedly, reliably, and nondestructively, pave the way for dynamic nanostenciling instrumentation to establish itself as a viable tool for easy integration and prototyping of fragile nanostructures synthesized through a wide range of processes.  相似文献   

17.
Many natural and biological systems are formed by the process of molecular self-assembly. Molecular self-assembly is defined as the spontaneous organization of molecules under thermodynamic equilibrium conditions into structurally well defined and rather stable arrangements. In this paper, we developed a novel computational methodology to investigate the self-assembly process of simple 1-D structures representing protein monomers into long filaments, rings, pyramids, bundles, etc. Based on the preliminary results obtained, the methodology was extended to mimic the microtubule self-assembly, which occurs in all eukaryotic cells.  相似文献   

18.
An approach to acquire axial structural information at nanoscale is demonstrated. It is based on spectral encoding of spatial frequency principle to reconstruct the structural information about the axial profile of the three-dimensional (3D) spatial frequency for each image point. This approach overcomes the fundamental limitations of current optical techniques and provides nanoscale accuracy and sensitivity in characterizing axial structures. Numerical simulation and experimental results are presented.  相似文献   

19.
Pires P  Rebordão JM 《Applied optics》1999,38(35):7183-7192
We looked for design methodologies that cope with optical specifications described in terms of trajectories in the CIE (Commission Internationale de l'Eclairage) 1976 chromaticity diagram in the context of low-cost mass-reproduction processes that inevitably introduce changes in the design of a diffractive device for security applications. The mathematics of the design process can be strongly simplified if the theory of planar waveguides (in integrated optics) is used to estimate, with sufficient accuracy, the position of Wood singularities, responsible for the more-interesting visual features of a grating. We show how to use such a model to assess color dynamics variations that are due to production and to estimate domains within the space of grating parameters that enable both first- and second-level security features to be implemented simultaneously. All the results are compared with the values obtained by rigorous coupled-wave analysis.  相似文献   

20.
Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号