首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
D. M. Jacobs and C. F. Michaels (2006) concluded that aspects of hand movements in lateral catching were predicted by the ratio of lateral optical velocity to expansion velocity. Their conclusions were based partly on a modified version of the required velocity model of catching (C. E. Peper, R. J. Bootsma, D. R. Mestre, & F. C. Bakker, 1994). The present article considers this optical ratio in detail and asks whether it, together with a control law, predicts the (often curious) hand trajectories observed in lateral interception. The optical ratio was used to create a succession of target-position inputs for the vector integration to endpoint model of hand movements (D. Bullock & S. Grossberg, 1988). The model used this succession, initial hand position, and model parameters (fit to 60 trials) to predict hand trajectories on each trial. Predicted trajectories were then compared with observed hand trajectories. Hand movements were predicted accurately, especially in the binocular condition, and were superior to predictions based on lateral ball position, the input variable of the required velocity model. The authors concluded, as did C. E. Peper et al. (1994), that perceivers continuously couple movements to optics. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
The nature of the neural mechanisms involved in movement planning still remains widely unknown. We review in the present paper the state of our knowledge of the mechanisms whereby a visual input is transformed into a motor command. For the sake of generality, we consider the main problems that the nervous system has to solve to generate a movement, that is: target localization, definition of the initial state of the motor apparatus, and hand trajectory formation. For each of these problems three questions are addressed. First, what are the main results presented in the literature? Second, are these results compatible with each other? Third, which factors may account for the existence of incompatibilities between experimental observations or between theoritical models? This approach allows the explanation of some of the contradictions existing within the movement-generation literature. It also suggests that the search for general theories may be in vain, the central nervous system being able to use different strategies both in encoding the target location with respect to the body and in planning hand displacement. In our view, this conclusion may advance the field by both opening new lines of research and bringing some sterile controversies to an end.  相似文献   

4.
Eye-hand coordination was investigated with the global effect paradigm. In this paradigm, saccades typically land in between the target and a nearby presented distractor, the configuration's center of gravity. This so-called global effect, or spatial averaging, is attributed to incomplete target selection. Four experiments demonstrated a similar effect for hand movements; thus, eye and hand are coupled during target selection. However, under some conditions the global effect was different for eye and hand, suggesting that their coupling is not achieved through a shared target representation. Instead, eye and hand seem to use 2 separate target representations that exchange information. The convergent amplitudes of eye and hand with simultaneous execution support this interpretation. Latencies showed a similar converging pattern. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
The chronometry of imagined and actual movements was investigated in a patient with a unilateral lesion of the motor cortex. Motor imagery generated highly accurate estimates of motor performance in a variety of situations, reflecting the hypokinesia of the contralesional hand. There were parallel increases in mental and actual movement times from proximal to distal limb segments. Bimanual movements adopted the slower speed of the impaired hand in both conditions. Imagined motor sequences to the beat of a metronome predicted the maximum speed reached in actual performance. Finally, visually guided pointing showed the same target-size effects in the imagery and movement conditions. The results are in agreement with the hypothesis that common cerebral motor representations are activated when imaging and planning voluntary movements.  相似文献   

6.
7.
The movement-related cortical electroencephalographic potential was recorded from scalp electrodes in 8 patients with idiopathic Parkinson's disease studied at least 12 hours after withdrawal of their normal drug therapy, and compared with the results from a group of 8 age-matched control subjects. Two types of self-paced voluntary arm movements were examined: repetitive forward movement of a joystick, and random-choice movements of the same joystick in which subjects had to choose freely the direction in which they were to move the stick (forward, backward, left, or right). In normal subjects, the movement-related cortical potential was larger prior to random-choice movements, whereas in the patients, the amplitude was the same in both tasks. The implication is that processes involved in self-selection of movement are abnormal in Parkinson's disease. This may contribute to the difficulty that patients have in initiating voluntary movement in the absence of any external cues.  相似文献   

8.
A series of 8 experiments examined the phenomenon that a rapid aimed hand movement is executed faster when it is performed as a single, isolated movement than when it is followed by a second movement (the 1-target advantage). Three new accounts of this effect are proposed and tested: the eye movement hypothesis, the target uncertainty hypothesis, and the movement integration hypothesis. Data are reported that corroborate the 3rd hypothesis, but not the first 2 hypotheses. According to the movement integration hypothesis, the first movement in a series is slowed because control of the second movement may overlap with execution of the first. It is shown that manipulations of target size and movement direction mediate this process and determine the presence and absence of the 1-target advantage. Possible neurophysiological mechanisms and implications for motor control theory are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
We have previously demonstrated that, in preparing themselves to aim voluntary impulses of isometric elbow force to unpredictable targets, subjects selected default values for amplitude and direction according the range of targets that they expected. Once a specific target appeared, subjects specified amplitude and direction through parallel processes. Amplitude was specified continuously from an average or central default; direction was specified stochastically from one of the target directions. Using the same timed response paradigm, we now report three experiments to examine how the time available for processing target information influences trajectory characteristics in two-degree-of-freedom forces and multijoint movements. We first sought to determine whether the specification of force direction could also take the form of a discrete stochastic process in pulses of wrist muscle force, where direction can vary continuously. With four equiprobable targets (two force amplitudes in each of two directions separated by 22 degrees or 90 degrees), amplitude was specified from a central default value for both narrow and wide target separations as a continuous variable. Direction, however, remained specified as a discrete variable for wide target separations. For narrow target separations, the directional distribution of default responses suggested the presence of both discrete and central values. We next examined point-to-point movements in a multijoint planar hand movement task with targets at two distances and two directions but at five directional separations (from 30 degrees to 150 degrees separation). We found that extent was again specified continuously from a central default. Direction was specified discretely from alternative default directions when target separation was wide and continuously from a central default when separation was narrow. The specification of both extent and direction evolved over a 200-ms time period beginning about 100 ms after target presentation. As in elbow force pulses, extent was specified progressively in both correct and wrong direction responses through a progressive improvement in the scaling of acceleration and velocity peaks to the target. On the other hand, movement time and hand path straightness did not change significantly in the course of specification. Thus, the specification of movement time and linearity, global features of the trajectories, are given priority over the specific values of extent and direction. In a third experiment, we varied the distances between unidirectional target pairs and found that movement extent is specified discretely, like direction, when the disparity in distances is large. The implications of these findings for contextual effects on trajectory planning are discussed. The independence of extent and direction specification and the prior setting of response duration and straightness provide critical support for the hypothesis that point-to-point movements are planned vectorially.  相似文献   

10.
Sixty aphasic patients and 55 normal control subjects were tested on a sentence production protocol that required subjects to produce specific sentence types from semantic representations. Normal subjects produced the expected targets with great reliability. Analysis of the patients' performance indicated that patients had difficulty producing both grammatical forms and thematic roles. Patients had more trouble producing grammatical elements than content words, and showed differential difficulty on sentence types that had more grammatical elements and in which the order of thematic roles was non-canonical. The results provide evidence regarding the processing load imposed by different components of the sentence production process.  相似文献   

11.
A central issue in neurobiology concerns the mechanisms of membrane fusion that are essential for the rapid regulated delivery of neurotransmitters into the synapse. While many gene products are required for neurosecretion, recent research has focused on defining the core exocytotic machinery that is responsible for the docking of synaptic vesicles (SVs) and their fusion with the plasma membrane. N-ethylmaleimide-sensitive factor (NSF), soluble NSF attachment protein (SNAP) and SNAP receptor (SNARE) proteins are essential for fusion but may not be critical for SV docking. Current evidence suggests that NSF functions during an ATP-dependent step after docking but before fusion. NSF may function to liberate SNARE proteins from complexes so that the proteins on apposed membranes align in a parallel fashion to bring SVs into close contact with the plasma membrane for fusion.  相似文献   

12.
In the present study a comparison was made between the distribution of Fos immunoreactivity in the brain of female and male rats following successive elements of sexual behavior. The distribution of Fos immunoreactivity following either mounting, eight intromissions or one or two ejaculations was compared with that in control animals. In both females, Fos immunoreactivity was induced in the medial preoptic nucleus, posteromedial part of the bed nucleus of the stria terminalis, posterodorsal part of the medial amygdala, and the parvicellular part of the subparafascicular thalamic nucleus. In addition, Fos immunoreactivity in females was induced in the ventrolateral part and the most caudoventral part of the ventromedial nucleus of the hypothalamus and in the premammillary nucleus. Differences between females and males were detected in the phases of sexual activity that resulted in Fos immunoreactivity in these brain areas, allowing more insight in the nature of the sensory and hormonal stimuli leading to the induction of Fos immunoreactivity. The posteromedial bed nucleus of the stria terminalis appears to be involved in chemosensory investigation, while specific distinct subregions are only activated following ejaculation. In addition, the parvicellular subparafascicular nucleus and the lateral part of the posterodorsal medial amygdala appear to be involved in the integration of viscero-sensory input. The neural circuitries underlying sexual behavior in males and females appear to be similar in terms of integration of sensory information. In males the medial preoptic nucleus may be regarded as the brain area where the integration of sensory and hormonal stimulation leads to the onset of male sexual behavior, while in females the ventrolateral part of the ventromedial hypothalamic nucleus appears to have this function. In addition, Fos immunoreactivity was distributed in distinct clusters in subregions with various brain areas in males and females. This was observed especially in the posteromedial bed nucleus of the stria terminalis and posterodorsal medial amygdala, but also in the parvicellular subparafascicular nucleus, ventromedial hypothalamic nucleus and ventral premammillary nucleus. It appears that relatively small subunits within these nuclei seem to be concerned with the integration of sensory and hormonal information and may play a critical role in sexual behavior.  相似文献   

13.
Considerable changes take place in the number of cerebral neurons, synapses and axons during development, mainly as a result of competition between different neural activities [1-4]. Studies using animals suggest that when input from one sensory modality is deprived early in development, the affected neural structures have the potential to mediate functions for the remaining modalities [5-8]. We now show that similar potential exists in the human auditory system: vibrotactile stimuli, applied on the palm and fingers of a congenitally deaf adult, activated his auditory cortices. The recorded magnetoencephalographic (MEG) signals also indicated that the auditory cortices were able to discriminate between the applied 180 Hz and 250 Hz vibration frequencies. Our findings suggest that human cortical areas, normally subserving hearing, may process vibrotactile information in the congenitally deaf.  相似文献   

14.
The authors compared the accuracy of emotion decoding for nonlinguistic affect vocalizations, speech-embedded vocal prosody, and facial cues representing 9 different emotions. Participants (N = 121) decoded 80 stimuli from 1 of the 3 channels. Accuracy scores for nonlinguistic affect vocalizations and facial expressions were generally equivalent, and both were higher than scores for speech-embedded prosody. In particular, affect vocalizations showed superior decoding over the speech stimuli for anger, contempt, disgust, fear, joy, and sadness. Further, specific emotions that were decoded relatively poorly through speech-embedded prosody were more accurately identified through affect vocalizations, suggesting that emotions that are difficult to communicate in running speech can still be expressed vocally through other means. Affect vocalizations also showed superior decoding over faces for anger, contempt, disgust, fear, sadness, and surprise. Facial expressions showed superior decoding scores over both types of vocal stimuli for joy, pride, embarrassment, and “neutral” portrayals. Results are discussed in terms of the social functions served by various forms of nonverbal emotion cues and the communicative advantages of expressing emotions through particular channels. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
16.
In bilingual aphasics, the neural correlates of rehabilitation benefits and their generalization across languages are still scarcely understood. The authors present the case of a highly proficient bilingual woman (Flemish, L1/Italian, L2) with chronic aphasia who, in the presence of the same pattern of impairment in both languages, showed parallel recovery in both languages after long-term rehabilitation therapy in L2. The authors postulated that this recovery was due to the engagement of the same neural substrates. To confirm this the authors used an event-related functional magnetic resonance imaging (fMRI) paradigm to explore cortical activation during an overt picture naming task, performed in both Flemish and Italian once before and once after 2 weeks of training in L2. Behaviorally, the patient showed complete recovery of both languages. The fMRI results indicated that the same cerebral regions were recruited for both languages before and after training. Increasing activations were observed perilesionally and in homologous contralesional areas. Our data, in agreement with previous results of fMRI studies in healthy bilinguals, indicate a promising direction for future research on the neural mechanisms associated with recovery in bilingual aphasics. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
An interactive 2-step theory of lexical retrieval was applied to the picture-naming error patterns of aphasic and nonaphasic speakers. The theory uses spreading activation in a lexical network to accomplish the mapping between the conceptual representation of an object and the phonological form of the word naming the object. A model developed from the theory was parameterized to fit normal error patterns. It was then "lesioned" by globally altering its connection weight, decay rates, or both to provide fits to the error patterns of 21 fluent aphasic patients. These fits were then used to derive predictions about the influence of syntactic categories on patient errors, the effect of phonology on semantic errors, error patterns after recovery, and patient performance on a single-word repetition task. The predictions were confirmed. It is argued that simple quantitative alterations to a normal processing model can explain much of the variety among patient patterns in naming. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The modern techniques for assisted reproduction have exposed many women to potent follicular stimulation regimens. Follicular stimulation is associated with an exposure to potent fertility drugs and abnormal estrogen, progesterone and human chorionic gonadotropin (hCG) concentrations. These treatments and hormones might affect the proliferation of epithelial breast cells and thus the risk of breast cancer. The possible effects of ovarian stimulation on the incidence and course of human breast cancer, and the need for long-term cohort studies is discussed.  相似文献   

19.
The hypothesis that memory for spoken sentences is facilitated by memory for sentence meaning was tested with 16 aphasic and 8 nonaphasic adults. Subjects were asked to make judgments of same or different on pairs of active and passive sentences separated in time. Sentence pairs were either identical in all respects or identical in just grammatical structure, subject-verb-object word order, or meaning. Nonaphasic subjects had higher sentence recognition scores, and larger percentages of meaning preserving responses than aphasic subjects. Aphasic subjects with the highest recognition scores made more meaning preserving responses than aphasic subjects with the lowest recognition scores. The results suggested that memory for spoken sentences is facilitated more by memory for sentence meaning than memory for structure of wording.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号