首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polydopamine, a functional coating material, is redox active as cathode materials for both Li‐ and Na‐ion batteries or hybrid capacitors. Here, a polydopamine coating onto 3D graphene framework is introduced through a simple hydrothermal process, during which graphene oxide serves not only as an oxidant for assisting the polymerization of dopamine, but also as a template for the conformal growth of polydopamine. High‐density films are fabricated by compressing the polydopamine‐coated graphene aerogels, which can be directly used as free‐standing and flexible cathodes in both Li‐ and Na‐cells. The compact electrodes deliver high capacities of ≈230 mAh g−1 in Li‐cells and ≈211 mAh g−1 in Na‐cells based on the total mass of electrodes. These compact electrodes also exhibit exceptional cycling stability and high rate performance due to the unique structure in which polydopamine is uniformly coated on the 3D structured graphene.  相似文献   

2.
Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.  相似文献   

3.
A convenient and efficient preparation method for separation graphene oxide with well-defined size distribution is developed using a centrifugation technique. The graded profile of graphene oxide nanosheets with narrow size distribution is effectively controlled by varying the centrifugation speed. The results show that the oxygen content of graphene oxide is highly dependent on their size distribution. Graphene oxide nanosheet with large size shows a red-shift in UV–vis absorption spectra, compared to graphene oxide with small size. This phenomenon is interpretation by a density functional theory calculation. The present work will provide a simple method to prepare graphene oxide nanosheets with controllable size distribution and C/O ratio, which will be valuable for the functionalization of graphene-based hybrids and the fabrication of graphene nano-devices.  相似文献   

4.
We investigated the surface charge effect of surface coating ligands on the colloidal stability of magnetite nanoparticles in a physiological saline solution. We employed the l-lysine and the l-glutamic acid as the surface coating ligands. We investigated the colloidal stability of the l-lysine and the l-glutamic acid coated magnetite nanoparticles by measuring their precipitation times, hydrodynamic diameter distributions, and zeta potentials in a physiological saline solution. From these three measurements, we found that the l-lysine coated magnetite nanoparticles are more stable as colloids than the l-glutamic acid coated magnetite nanoparticles. Based on the bonding structures of the l-lysine and the l-glutamic acid to magnetite nanoparticles, we successfully discussed the colloidal stability in terms of the surface charge effect of the amino acids.  相似文献   

5.
Thiofunctional polymers are the established standard for the coating and biofunctionalization of gold nanoparticles (AuNPs). However, the nucleophilic and oxidative character of thiols provokes polymeric crosslinking and significantly limits the chemical possibilities to introduce biological functions. Thioethers represent a chemically more stable potential alternative to thiols that would offer easier functionalization, yet a few studies in the literature report inconclusive data regarding the efficacy of thioethers to stabilize AuNPs in comparison to thiols. A systematic comparison is presented of mono‐ versus multivalent thiol‐ and thioether‐functional polymers, poly(ethylene glycol) versus side chain functional poly(glycidol) (PG) and it is shown that coating of AuNPs with multivalent thioether‐functional PG leads to superior colloidal stability, even under physiological conditions and after freeze‐drying and resuspension, as compared to thiol analogs at comparable polymer surface coverages. In addition, it is shown that a wide range of functional groups can be introduced in these polymers. Using diazirine functionalization as example, it is demonstrated that proteins can be covalently immobilized, and that conjugation of antibodies via this strategy enables efficient targeting and laser‐irradiation induced killing of cells.  相似文献   

6.
The functionalization of graphene has been extensively used as an effective route for modulating the surface property of graphene, and enhancing the dispersion stability of graphene in aqueous solutions via functionalization has been widely investigated to expand its use for various applications across a range of fields. Herein, an effective approach is described for enhancing the dispersibility of graphene in aqueous solutions at different pH levels via non‐covalent zwitterion functionalization. The results show that a surfactant with electron‐deficient carbon atoms in its backbone structure and large π–π interactive area enables strong interactions with graphene, and the zwitterionic side terminal groups of the molecule support the dispersibility of graphene in various pH conditions. Experimental and computational studies confirm that perylene diimide amino N‐oxide (PDI–NO) allows efficient functionalization and pH‐independent dispersion of graphene enabled by hydration repulsion effects induced by PDI–NO. The PDI–NO functionalized graphene is successfully used in the oxygen evolution reaction as an electron mediator for boosting the electrocatalytic activity of a Ru‐based polyoxometalate catalyst in an acidic medium. The proposed strategy is expected to bring significant advances in producing highly dispersible graphene in aqueous medium with pH‐independent stability, thus broadening the application range of graphene.  相似文献   

7.
镀镍石墨烯的微波吸收性能   总被引:4,自引:0,他引:4  
用化学还原液相悬浮氧化石墨法制备了石墨烯, 经亲水处理后, 利用化学镀镍法在其表面镀上均匀镍颗粒层. 采用SEM、EDX、振动样品磁强计等对样品的形貌、元素成分与磁性质进行了表征, 并用矢量网络分析仪测试了样品在2~18GHz频带内的复磁导率和复介电常数, 利用计算机模拟出不同厚度材料的微波衰减性能. 结果表明, 材料的微波吸收峰随着样品厚度的增加向低频移动, 材料的电磁损耗机制主要为电损耗, 未镀镍石墨烯的吸波层厚度为1mm时, 在7GHz左右最大衰减值?为?6.5dB, 镀镍石墨烯的吸波层厚度为1.5mm时, 在约12GHz时最大值为-16.5dB, 并且在频带9.5~14.6 GHz的范围内达到-10dB的吸收.  相似文献   

8.
Hydrophobic graphene-based material at the nanoscale was prepared by treatment of exfoliated graphene oxide with organic isocyanates. The lipophilic modified graphene oxide (LMGO) can then be exfoliated into the functionalized graphene nanoplatelets that can form a stable dispersion in polar aprotic solvents. AFM image shows the thickness of LMGO is approximately 1 nm. Characterization of LMGO by elemental analysis suggested that the chemical treatment results in the functionalization of the carboxyl and hydroxyl groups in GO via formation of amides and carbamate esters, respectively. The degree of GO functionalization can be controlled via either the reactivity of the isocyanate or the reaction time. Then we investigated the thermal properties of the SPFGraphene by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the TGA curve shows a greater weight loss of approximately 20% occurred indicating removal of functional groups from the LMGO sheets and an obvious exothermic peak at 176 degrees can be observed from 150 to 250 degrees. We also compared the structure of graphene oxide with the structure of chemical treated graphene oxide by FT-IR spectroscopy. The morphology and microstructure of the LMGO nanosheets were also characterized by SEM and XRD. Graphene can be used to fabricate a wide range of simple electronic devices such as field-effect transistors, resonators, quantum dots and some other extensive industrial manufacture such as super capacitor, li ion battery, solar cells and even transparent electrodes in device applications.  相似文献   

9.
When fabricated by thermal exfoliation, graphene can be covalently functionalized more easily by applying a direct ring-opening reaction between the residual epoxide functional groups on the graphene and the amine-bearing molecules. Investigation by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) all confirm that these molecules were covalently grafted to the surface of graphene. The resulting dispersion in an organic solvent demonstrated a long-term homogeneous stability of the products. Furthermore, comparison with traditional free radical functionalization shows the extent of the defects characterized by TEM and Raman spectroscopy and reveals that direct functionalization enables graphene to be covalently functionalized on the surface without causing any further damage to the surface structure. Thermogravmetric analysis (TGA) shows that the nondestroyed graphene structure provides greater thermal stability not only for the grafted molecules but also, more importantly, for the graphene itself, compared to the free-radical grafting method.  相似文献   

10.
A novel folate-decorated and graphene mediated drug delivery system was prepared that involves uniquely combining graphene oxide (GO) with anticancer drug for controlled drug release. The nanocarrier system was synthesized by attaching doxorubicin (DOX) to graphene oxide via strong π–π stacking interaction, followed by encapsulation of graphene oxide with folic acid conjugated chitosan. The π–π stacking interaction, simplified as a non-covalent type of functionalization, enables high drug loading and subsequent controlled release of the drug. The encapsulated graphene oxide enhanced the stability of the nanocarrier system in aqueous medium because of the hydrophilicity and cationic nature of chitosan. The loading and release of DOX indicated strong pH dependence and imply hydrogen-bonding interaction between graphene oxide and DOX. The proposed strategy is advantageous in terms of targeted drug delivery and has high potential to address the current challenges in drug delivery. Thus, the prepared nanohybrid system offers a novel formulation that combines the unique properties of a biodegradable material, chitosan, and graphene oxide for biomedical applications.  相似文献   

11.
以牛血清白蛋白(BSA)改性玻璃纤维表面, 利用静电吸附原理制备氧化石墨包覆的玻璃纤维复合材料, 采用氢碘酸还原氧化石墨得到石墨烯包覆玻璃纤维导电材料。利用X射线衍射(XRD)和傅立叶变换红外光谱仪(FT-IR)等表征样品的物相结构和基团类型, 扫描电镜(SEM)表征石墨烯包覆玻璃纤维的形貌特征。当氧化石墨分散液pH低于6时, 随着pH减小, 包覆效果变得更明显。通过粒径/Zeta电位仪表征氧化石墨和BSA在不同pH下的Zeta电位, 结果表明BSA等电点约为5.3, 氧化石墨的等电点小于3。得到的石墨烯包覆玻璃纤维导电材料的电导率达到4.5 S/m, 制备的导电玻璃纤维具有一定的柔性, 在弯曲后仍能保持原有的导电性能; 导电玻璃纤维在高于100℃热处理后, 由于石墨烯在高温下可以继续还原, 其电导率得到一定的提高, 表明制备的导电玻璃纤维可以在较高温度下使用。  相似文献   

12.
Selective electrochemically activated biofunctionalization of In(2)O(3) nanowires (NWs) has been achieved, using monolayer coatings of p-dimethoxybenzene derivatives. Monolayer coatings of 4-(2,5-dimethoxyphenyl)butyl-phosphonic acid (DMP-PA) were deposited on planar indium-tin oxide (ITO) electrodes and In(2)O(3) NWs. The electrochemical behavior of the monolayer coating was first studied using ITO electrodes, as a model system for In(2)O(3) nanowires. When a potential of 950 mV vs a Ag/AgCl reference electrode is applied to an ITO electrode coated with DMP-PA in PBS buffer, the p-dimethoxyphenyl groups are converted to p-benzoquinone (BQ). The electrochemically formed benzoquinone groups react readily with alkyl thiol groups via a Michael addition. The reaction strategy optimized on ITO was applied to an In(2)O(3) NW mat sample coated with DMP-PA. Applying a potential of 950 mV to metal electrodes deposited on NWs converts the DMP-PA NW coating to BQ-PA, which reacts with a thiol-terminated 20-base oligonucleotide. These NWs showed strong fluorescence response after paring with the dye labeled compliment, demonstrating that the probe was bound to the NW surface and that it remained active toward hybridization with its compliment. The unactivated DMP-PA coated NWs showed no response, demonstrating the selective electrochemical functionalization of NWs and the potential of using them in multiplex sensing. We also compared the p-dimethoxybenzene derivative to the conventional hydroquinone analog. The results show that the former can largely enhance the selectivity during the functionalization of both ITO and In(2)O(3) NWs.  相似文献   

13.
In this study, magnetic iron oxide (IOPs) nanoparticles were coated with gelatin B, and various parameters were investigated to find out effects of those parameters in the overall hydrodynamic size of the colloidal dispersions. Two different types of coating techniques, viz., in situ and separately precipitation/coating technique were investigated. In in situ precipitation/coating technique, precipitation, and coating of the IOPs were done simultaneously, while in separately precipitation/coating technique, the IOPs particles were separately precipitated and purified before surface coating was done. The colloidal dispersion obtained from these two methods showed drastically different viscosities as well as hydrodynamic size. It was found that in situ precipitation/coating technique gave smaller-sized monodispersed particles compare to separately precipitation/coating technique. In addition to the above two techniques, the desolvation/cross-linking technique was also investigated and found to, further, reduce the size of the ferrofluid prepared by the in situ and separately precipitation/coating techniques. The ferrofluids prepared using in situ as well as separately precipitation techniques were highly stable and did not sediment for more than 1 month. However, the desolvation/cross-linking technique gave dispersion with reduced stability. Nevertheless, by adjusting suitable combination of acetone and glyceraldehydes, ferrofluid with better stability could be produced by this technique.  相似文献   

14.
Solution of chitosan in dilute acetic acid was prepared to have an apparent viscosity of 125 mPa s and mixed with solution of anionic water-soluble dye. The effects of concentration and type of dye and molecular weight and percentage deacetylation of chitosan on their miscibility and physical stability were investigated. High concentration of dye and high molecular weight and percentage deacetylation of chitosan resulted in precipitation or colloidal dispersion due to ionic interaction between dye and the polymer. The effect was more prominent upon storage. The miscibility of dye and the polymer depended on the molecular configuration and ionic group in the dye molecule. It was ranked brilliant blue approximately euqal to green FS > fast green > ponceau SX approximately euqal to green sunset yellow > erythrosine approximately euqal to green tartrazin > indigo carmine. Solutions of low molecular weight chitosan with and without green FS were then used as coating formulations onto propranolol hydrochloride core tablets. There was no color migration on coated tablets even after storage for 1 year. Disintegration and drug dissolution from tablets coated with colored film were slightly slower than those from tablets coated with plain film and core tablet, respectively. This was corresponding to the results of swelling and dissolution of cast films. However, all tablets conformed to the specification in monograph of USP XXIV.  相似文献   

15.
Alumina coated zinc oxide (ZnO) nanowires were synthesized through the combination of hydrothermal growth and sol–gel deposition method. The effects of post annealing temperature on structural and optoelectronic properties of the deposited samples were evaluated using scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy, photoluminescence spectroscopy and Raman spectroscopy. It was found that the ZnO nanowire can be used as template for further functionalization. As a demonstration, dye sensitized solar cells were fabricated with the alumina coated ZnO nanowires.  相似文献   

16.
Wang H  Yang Y  Liang Y  Robinson JT  Li Y  Jackson A  Cui Y  Dai H 《Nano letters》2011,11(7):2644-2647
We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates, and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ~600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.  相似文献   

17.
An experimental study on the interaction between the top and bottom layer of a chemically functionalized graphene bilayer by mild oxygen plasma is reported. Structural, chemical, and electrical properties are monitored using Raman spectroscopy, transport measurements, conductive atomic force microscopy and X‐ray photoelectron spectroscopy. Single‐ and double‐sided chemical functionalization are found to give very different results: single‐sided modified bilayers show relatively high mobility (200–600 cm2 V?1 s?1 at room temperature) and a stable structure with a limited amount of defects, even after long plasma treatment (>60 s). This is attributed to preferential modification and limited coverage of the top layer during plasma exposure, while the bottom layer remains almost unperturbed. This could eventually lead to decoupling between top and bottom layers. Double‐sided chemical functionalization leads to a structure containing a high concentration of defects, very similar to graphene oxide. This opens the possibility to use plasma treatment not only for etching and patterning of graphene, but also to make heterostructures (through single‐sided modification of bilayers) for sensors and transistors and new graphene‐derivatives materials (through double‐sided modification).  相似文献   

18.
An easy and environmentally friendly chemical method for the simultaneous reduction and noncovalent functionalization of graphene oxide (GO) using dopamine derivatives is described. The reaction takes place at room temperature under ultrasonication of an aqueous suspension of GO and a dopamine derivative. X-ray photoelectron spectroscopy, FT-IR spectroscopy, and cyclic voltammetry characterizations revealed that the resulting material consists of graphene functionalized with the dopamine derivative. This one-step protocol is applied for simultaneous reduction and functionalization of graphene oxide with a dopamine derivative bearing an azide function. The chemical reactivity of the azide function was demonstrated by a postfunctionalization with ethynylferrocene using the Cu(I) catalyzed 1,3-dipolar cyloaddition.  相似文献   

19.
The synthesis and surface modification of gold nanorods (GNRs) is one of the most important and basic issues in nanoscience. Most of the widely investigated GNRs are coated with a cetyltrimethylammonium bromide(CTAB) bilayer. Here, a highly efficient method is proposed to replace CTAB from the surface of GNRs with a bifunctional 11‐mercaptoundecanoic acid in order to decrease the possible toxicity caused by CTAB. This ligand exchange is achieved in a biphasic mixture of an aqueous solution and a water‐immiscible ionic liquid (IL), [BMIM][Tf2N]. That is, by mixing IL, mercaptoundecanoic acid (MUA)/IL (200 × 10?3 m ) and a concentrated aqueous solution of GNRs together, followed by vortex stirring for 90 s, CTAB‐capped GNRs with varying aspect ratios can be turned into corresponding MUA‐capped GNRs with the same aspect ratio. Furthermore, the formed MUA‐capped GNRs can be obtained in a large quantity and stored as powders for easy use. The MUA‐capped GNRs with improved biocompatibility and colloidal stability are well suited for further biological functionalization and potential applications. This IL‐assisted ligand exchange can reverse the surface charge, enhance the stability of GNRs, and suppress its cytotoxicity.  相似文献   

20.
Emergence of novel two-dimensional (2-D) templates, e.g., graphene oxide, has signified new intriguing opportunities to couple nanocrystals electronically to the microscopic 2-D contacts. A promising approach to uniform dispersion of inorganic nanocrystals on the 2-D interfaces is to graft them through chemical bonding. The 2-D dispersion would offer a unique opportunity to address one of the primary challenges in the field of nanotechnology: fulfilling excellent chemical and physical properties of the nanocrystals in electronic solid-state devices. In this study, we blended colloidal nanocrystals with graphene oxide in aqueous solution in attempts to bind the nanocrystals on reactive sites of the graphene oxide surface, thereby achieving uniform loading. Interestingly, the nanocrystals undergo significant crystalline transformation even under relatively moderate reaction conditions. The growth of particle size and the drastic crystalline deformation, e.g., from wurtzite CdSe to amorphous Se, appear to take place in the proximity of acidic functional groups on graphene oxide. Photocarriers also play a key role in the reaction: under room light, the transformation yielded dramatic size increase and crystalline transformation, whereas in the dark, the change was suppressed. The experimental results presented in this study provide guidelines for uniform 2-D loading of colloidal nanocrystals on graphene oxide. The findings suggest that the surface acidity be titrated for colloidal nanocrystals to deposit on the graphitic layer and to avoid unwanted changes of nanocrystal size and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号