首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystallization kinetics of MC nylon (PA6) and polyazomethine (PAM)/MC nylon (PAM/PA6) both have been isothermally and nonisothermally investigated by different scanning calorimetry (DSC). Two stages of crystallization are observed, including primary crystallization and secondary crystallization. The Avrami equation and Mo's modified method can describe the primary stage of isothermal and nonisothermal crystallization of PA6 and PAM/PA6 composite, respectively. In the isothermal crystallization process, the values of the Avrami exponent are obtained, which range from 1.70 to 3.28, indicating an average contribution of simultaneous occurrence of various types of nucleation and growth of crystallization. The equilibrium melting point of PA6 is enhanced with the addition of a small amount of rigid rod polymer chains (PAM). In the nonisothermal crystallization process, we obtain a convenient method to analyze the nonisothermal crystallization kinetics of PA6 and PAM/PA6 composites by using Mo's method combined with the Avrami and Ozawa equations. In the meanwhile, the activation energies are determined to be ?306.62 and ?414.81 KJ/mol for PA6 and PAM/PA6 (5 wt %) composite in nonisothermal crystallization process from the Kissinger method. Analyzing the crystallization half‐time of isothermal and nonisothermal conditions, the over rate of crystallization is increased significantly in samples with a small content of PAM, which seems to result from the increased nucleation density due to the presence of PAM rigid rod chain polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2844–2855, 2004  相似文献   

2.
Nylon 10 12, a newly industrialized engineering plastic, shows a double‐melting phenomenon during melting. Partial melts were obtained when the sample was heated to the temperature between the two melting peaks. A differential scanning calorimeter was used to monitor the energies of the isothermal and nonisothermal crystallization from the partially melted samples. During isothermal crystallization, relative crystallinity develops with a time dependence described by the Avrami equation, with the exponent n = 1.0. For nonisothermal studies, kinetics treatments based on the Avrami and Ozawa equations are presented to describe the crystallization process. It was found that the two treatments can describe the nonisothermal crystallization from the partially melted samples. The derived Avrami and Ozawa exponents are all about 1.0, which means that the partially melted samples crystallize by one‐dimensional growth, which may cause thickening of the lamellae. We calculated the crystallization activation energies for isothermal and nonisothermal crystallization from the partially melted samples. It was found that the activation energy determined by the Kissinger method was not rational, which may be attributed to the free‐nucleation process for nonisothermal crystallization from partially melted samples. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1311–1319, 2003  相似文献   

3.
Analyses of the isothermal and nonisothermal melt kinetics for syndiotactic polystyrene have been performed with differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The regime II→III transition, at a crystallization temperature of 239°, is found. The values of the nucleation parameter Kg for regimes II and III are estimated. The lateral‐surface free energy, σ = 3.24 erg cm?2, the fold‐surface free energy, σe = 52.3 ± 4.2 erg cm?2, and the average work of chain folding, q = 4.49 ± 0.38 kcal/mol, are determined with the (040) plane assumed to be the growth plane. The observed crystallization characteristics of syndiotactic polystyrene are compared with those of isotactic polystyrene. The activation energies of isothermal and nonisothermal melt crystallization are determined to be ΔE = ?830.7 kJ/mol and ΔE = ?315.9 kJ/mol, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2528–2538, 2002  相似文献   

4.
Analysis of the isothermal, and nonisothermal crystallization kinetics of Nylon-11 is carried out using differential scanning calorimetry. The Avrami equation and that modified by Jeziorny can describe the primary stage of isothermal and nonisothermal crystallization of Nylon-11. In the isothermal crystallization process, the mechanism of spherulitic nucleation and growth are discussed; the lateral and folding surface free energies determined from the Lauritzen–Hoffman equation are ς = 10.68 erg/cm2 and ςe = 110.62 erg/cm2; and the work of chain folding q = 7.61 Kcal/mol. In the nonisothermal crystallization process, Ozawa analysis failed to describe the crystallization behavior of Nylon-11. Combining the Avrami and Ozawa equations, we obtain a new and convenient method to analyze the nonisothermal crystallization kinetics of Nylon-11; in the meantime, the activation energies are determined to be −394.56 and 328.37 KJ/mol in isothermal and nonisothermal crystallization process from the Arrhonius form and the Kissinger method. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2371–2380, 1998  相似文献   

5.
The isothermal crystallization kinetics have been investigated with differential scanning calorimetry for high‐flow nylon 6, which was prepared with the mother salt of polyamidoamine dendrimers and p‐phthalic acid, an end‐capping agent, and ε‐caprolactam by in situ polymerization. The Avrami equation has been adopted to study the crystallization kinetics. In comparison with pure nylon 6, the high‐flow nylon 6 has a lower crystallization rate, which varies with the generation and content of polyamidoamine units in the nylon 6 matrix. The traditional analysis indicates that the values of the Avrami parameters calculated from the half‐time of crystallization might be more in agreement with the actual crystallization mechanism than the parameters determined from the Avrami plots. The Avrami exponents of the high‐flow nylon 6 range from 2.1 to 2.4, and this means that the crystallization of the high‐flow nylon 6 is a two‐dimensional growth process. The activation energies of the high‐flow nylon 6, which were determined by the Arrhenius method, range from ?293 to ?382 kJ/mol. The activation energies decrease with the increase in the generation of polyamidoamine units but increase with the increase in the content of polyamidoamine units in the nylon 6 matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
The isothermal and nonisothermal melt crystallization kinetics of a novel poly(aryl ether ketone ether ketone ketone) containing a meta‐phenyl linkage (PEKEKmK) were studied by differential scanning calorimetry. The Avrami equation was used to analyze the isothermal crystallization kinetics of PEKEKmK. The crystallization mechanism did not change within the crystallization temperature range, but the crystallization rate decreased with an increase in the crystallization temperature. The equilibrium melting point, T, was determined to be 327°C according to the Hoffman–Weeks equation. Moreover, the nonisothermal crystallization kinetics of PEKEKmK was also investigated by the Avrami equation as modified by Jeziorny. It was found that the nonisothermal crystallization behavior of PEKEKmK could be described well by this method at various cooling rates, although the parameters n and Zc did not have the same clear physical meaning as for isothermal crystallization kinetics. The thermal properties and crystallization characteristics of PEKEKmK were compared with those of all‐para PEKEKK(T) and PEKEKK(T/I) with a T/I ratio of 1. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4775–4779, 2006  相似文献   

7.
The crystallization process of a new polyamide, nylon 1313, from the melt has been thoroughly investigated under isothermal and nonisothermal conditions. During isothermal crystallization, relative crystallinity develops in accordance with the Avrami equation with the exponent n ≈ 2 based on DSC analysis. Under nonisothermal conditions, several different analysis methods were used to elucidate the crystallization process. The Avrami exponent n is greater in the isothermal crystallization process, indicating that the mode of nucleation and the growth of the nonisothermal crystallization for nylon 1313 are more complicated, and that the nucleation mode might include both homogeneous and heterogeneous nucleation simultaneously. The calculated activation energy is 214.25 kJ/mol for isothermal crystallization by Arrhenius form and 135.1 kJ/mol for nonisothermal crystallization by Kissinger method, respectively. In addition, the crystallization ability of nylon 1313 was assessed by using the kinetic crystallizability parameters G. Based on this parameter, the crystallizability of many different polymers was compared theoretically. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1415–1422, 2007  相似文献   

8.
The isothermal cold crystallization kinetics of polylactide (PLA)/nucleating agents (CaCO3, TiO2, and BaSO4, content from 0.5–2.0 wt %) was investigated by differential scanning calorimetry in the temperature range of 120–124°C. With blending nucleating agents, the crystallinity of PLA had a maximum crystallinity of 14.9%. Crystallization rate decreased with increasing crystallization temperature in the researched content range. The crystallization rate followed the Avrami equation with the exponent n around 4.5. From Lauritzen–Hoffman equation, the nucleation parameter Kg was estimated. And from the value of Kg, regime II crystallization behavior can be concluded. Then the lateral and fold surface free energy were calculated from Kg. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 310–317, 2007  相似文献   

9.
In this work, the nonisothermal and isothermal cold crystallization behaviors of poly(l ‐lactide) (PLLA)/trisilanolisobutyl‐polyhedral oligomeric silsesquioxanes (tsib‐POSS) nanocomposites with low tsib‐POSS contents were fully investigated. For all the samples, the variations of heating rate and the tsib‐POSS loading may influence the nonisothermal cold crystallization of PLLA. During the nonisothermal crystallization kinetics study, the Ozawa equation failed to fit the nonisothermal crystallization process of PLLA, while the Tobin equation could fit it well. For the isothermal crystallization kinetics study, the crystallization rates of all the samples increased with increasing crystallization temperature. The cold crystallization activation energy of PLLA was increased with 1 wt % tsib‐POSS. Moreover, the addition of tsib‐POSS and the increment of tsib‐POSS loading could increase the crystallization rate of PLLA, indicating the nucleating agent effect of tsib‐POSS. However, the crystallization mechanism and crystal structure of PLLA remained unchanged in the nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43896.  相似文献   

10.
Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.  相似文献   

11.
The crystallization kinetics and melting behavior of nylon 10,10 in neat nylon 10,10 and in nylon 10,10–montmorillonite (MMT) nanocomposites were systematically investigated by differential scanning calorimetry. The crystallization kinetics results show that the addition of MMT facilitated the crystallization of nylon 10,10 as a heterophase nucleating agent; however, when the content of MMT was high, the physical hindrance of MMT layers to the motion of nylon 10,10 chains retarded the crystallization of nylon 10,10, which was also confirmed by polarized optical microscopy. However, both nylon 10,10 and nylon 10,10–MMT nanocomposites exhibited multiple melting behavior under isothermal and nonisothermal crystallization conditions. The temperature of the lower melting peak (peak I) was independent of MMT content and almost remained constant; however, the temperature of the highest melting peak (peak II) decreased with increasing MMT content due to the physical hindrance of MMT layers to the motion of nylon 10,10 chains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2181–2188, 2003  相似文献   

12.
Isothermal and non‐isothermal crystallization kinetics of long alkane chain segment nylon 1010, 1013 and 1014 were investigated by differential scanning calorimetry. The commonly used Avrami equation and that modified by Jeziorny were employed to fit the isothermal and non‐isothermal crystallizations of nylon 1010, 1013 and 1014, respectively. It was found that the crystallization rate of nylon with a longer alkane chain segment was slower than that of nylon with a shorter one at a given cooling rate. The activation energies for the isothermal and non‐isothermal crystallizations determined by the Arrhenius and the Kissinger methods, respectively, decreased with increase of the alkane chain segment length of nylon 1010, 1013 and 1014. Furthermore, the activation energy of the non‐isothermal crystallization process of these nylons, determined by the isoconversional methods of Flynn and Wall and Ozawa, was found to be a decreasing function of the relative degree of crystallinity. © 2014 Society of Chemical Industry  相似文献   

13.
The isothermal and nonisothermal crystallization kinetics of a semicrystalline copolyterephthalamide based on poly(decamethylene terephthalamide) (PA‐10T) was studied by differential scanning calorimetry. Several kinetic analyses were used to describe the crystallization process. The commonly used Avrami equation and the one modified by Jeziorny were used, respectively, to describe the primary stage of isothermal and nonisothermal crystallization. The Avrami exponent n was evaluated to be in the range of 2.36–2.67 for isothermal crystallization, and of 3.05–5.34 for nonisothermal crystallization. The Ozawa analysis failed to describe the nonisothermal crystallization behavior, whereas the Mo–Liu equation, a combination equation of Avrami and Ozawa formulas, successfully described the nonisothermal crystallization kinetics. In addition, the value of crystallization rate coefficient under nonisothermal crystallization conditions was calculated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 819–826, 2004  相似文献   

14.
Subsequent melting behavior after isothermal crystallization at different temperatures from the isotropic melt and nonisothermal crystallization kinetics and morphology of partially melting sPB were carried out by differential scanning calorimetry (DSC), polarized light microscopy (POM), respectively. Triple melting‐endothermic peaks were observed for the polymer first isothermally crystallized at temperatures ranging from 141 to 149°C, respectively, and then followed by cooling at 10°C/min to 70°C. Comparing with the nonisothermal crystallization from the isotropic melt, the nonisothermal crystallization for the partially melting sPB characterized the increased onset crystallization temperature, and the sizes of spherulites became smaller and more uniform. The Tobin, Avrami, Ozawa, and the combination of Avrami and Ozawa equations were applied to describe the kinetics of the nonisothermal process. Both of the Tobin and the Avrami crystallization rate parameters (KT and KA, respectively) were found to increase with increase in the cooling rate. The parameter F(T) for the combination of Avrami and Ozawa equations increases with increasing relative crystallinity. The Ziabicki's kinetic crytallizability index GZ for the partially melting sPB was found to be 3.14. The effective energy barrier Δ? describing the nonisothermal crystallization of partially melting sPB was evaluated by the differential isoconversional method of Friedman and was found to increase with an increase in the relative crystallinity. At the same time, Hoffman‐Lauritzen parameters (U and Kg) are evaluated and analyzed from the nonisothermal crystallization data by the combination of isoconversional approach and Hoffman‐Lauritzen theory. The Kg value obtained from DSC technique was found to be in good agreement with that obtained from POM technique. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1479–1491, 2006  相似文献   

15.
The isothermal crystallization behavior of polypropylene (PP) catalloys and neat PP were studied with differential scanning calorimetry and polarized optical microscopy (POM). The crystallization kinetics of the samples were described with the well‐known Avrami equation. The crystallization rate depended remarkably on the content of the ethylene component in the PP catalloys. The crystallization half‐time increased obviously with the increase of the ethylene component in the PP catalloys. We also observed by POM that in isothermal crystallization, there were many more nuclei in the PP catalloys than that in neat PP and with an increase of the ethylene component, the average size of the spherulites decreased obviously. Even when ethylene content was as high as 27%, the crystallization rate still increased apparently, and this was quite different from common PP melting blends, in which the crystallization rate decreased when the ethylene content was relatively high because of the obstruction effect of dispersed droplets to the spherulite growth of the PP matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 877–882, 2004  相似文献   

16.
In the first part of this article, we reported the crystalline memory effect on the nonisothermal crystallization of poly(L ‐lactide). The experiments were carried out by using polymer single crystals growth from dilute solution as standard starting material. In this article (Part II), we have analyzed in detail the effect of the melting condition on the overall crystallization kinetics by applying the Nakamura‐Avrami model to DSC results. The absence or the low concentration of foreign infusible heterogeneous nuclei in our system allowed us to exalt the self‐nuclei role in polymer crystallization, to follow their concentration decrease during the melting process and to find the limiting melting temperature for their disappearance. Below such a temperature, a stable equilibrium number of self‐nuclei was observed, probably deriving from ordered structures, persisting in the melt, and originated from the single crystals thickening process during the polymer dynamic melting in the DSC. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
The non‐isothermal crystallization behavior of cork–polymer composites (CPC) based on polypropylene (PP) matrix was studied. Using differential scanning calorimetry (DSC), the crystallization behavior of CPC with 15 wt % cork powder at different cooling rates (5, 10, 15, and 20 °C/min) was studied. The effect of a coupling agent based on maleic anhydride was also analyzed. A composite (PPg) containing polypropylene grafted maleic anhydride (PPgMA) and PP was prepared for comparison purposes. Crystallization kinetic behavior was studied by Avrami, Ozawa, Liu, and Kissinger methods. The Ozawa method fails to describe the behavior of these composites. Results show that cork powder surface acts as a nucleating agent during non‐isothermal crystallization, while the addition of PPgMA decreases the crystallization rate. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44124.  相似文献   

18.
The kinetics of the isothermal and nonisothermal cold crystallization of syndiotactic polystyrene (s‐PS) were characterized with differential scanning calorimetry. A Johnson–Mehl–Avrami analysis of the isothermal experiments indicated that the cold crystallization of s‐PS at a constant temperature followed a diffusion‐controlled growth mode with a decreasing nucleation rate. Furthermore, the slow nucleation rate was the controlling step of the entire kinetic process. For nonisothermal cold‐crystallization kinetics, we used a simple model based on a combination of the well‐known Avrami and Ozawa models. The analysis revealed that, unlike for melt crystallization, the Avrami and Ozawa exponents were not equal. The activation energies for the isothermal and nonisothermal cold crystallizations of s‐PS were 792.0 and 148.62 kJ mol?1, respectively, indicating that the smaller motion units in cold crystallization had a weaker temperature dependence than those in melt crystallization. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3464–3470, 2003  相似文献   

19.
Nonisothermal crystallization of poly(N‐methyldodecano‐12‐lactam) (MPA) was investigated using DSC method at cooling rates of 2–40 K/min. With increasing cooling rate, crystallization exotherms decreased in magnitude and shifted toward lower temperatures. Subsequent heating runs (10 K/min) showed an exotherm just above Tg, which increased in magnitude with the rate of preceding cooling run, corresponding to the continuation of primary crystallization interrupted as the system crossed Tg on cooling. Kinetic evaluation by the Avrami method gave values of exponent n close to 2.0, suggesting two‐dimensional crystal growth combined with heterogeneous nucleation. The Tobin method, covering the intermediate range of relative crystallinities, provided n ? 2.20, suggesting possible partial involvement of homogeneous nucleation at later stages of nonisothermal crystallization. The crystallization rate parameter k1/n showed a linear dependency on cooling rate for both methods, the Tobin values being slightly higher. The Ozawa approach failed to provide reasonable values of the kinetic exponent m of MPA. The Augis–Bennet method was used to determine the effective activation energy of the entire nonisothermal crystallization process of MPA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 564–572, 2005  相似文献   

20.
A polyacetal (POM)/poly(ε‐caprolactone) (PCL) reactive blend prepared via a chain‐transfer reaction was investigated with respect to its morphology and nonisothermal crystallization, and the results were compared with those of a simple POM/PCL blend. The reactive blend had a microscopically phase‐separated morphology in which the diameter of the PCL microphase was below 100 nm, and it clearly yielded ring‐banded spherulites, whereas between the two blends, there were no significant differences in the diameters and polygonal edges of the spherulites and in the long period of the POM phases. The PCL part of the reactive blend crystallized within the confined microspace with about 10% lower crystallinity than that of the corresponding simple blend. A lower Avrami exponent and crystallization rate parameter of the PCL part were observed in the primary crystallization process of the reactive blend. In contrast, the crystallinity of the POM component and the nonisothermal crystallization kinetic parameters of the POM part showed no noticeable differences between the two blends at any given cooling rate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号