首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vulcanizates from blends of natural rubber and thioglycolic acid modified, epoxidized, low‐molecular‐weight natural rubber filled with mixtures of carbon black and carbonized rubber seed shell, with semiefficient sulfur vulcanization recipes, were critically investigated and characterized. The investigated properties were the processing and rheological properties (the cure rate, cure time, scorch time, total oscillating disc rheometry torque, and Mooney viscosity), physicomechanical and chemical properties, solvent resistance, solubility, and swelling properties. On the basis of the investigated properties, it was observed that the carbonized rubber seed shell acted as a plasticizer and not as a reinforcing filler such as carbon black. The replacement of carbon black with up to 20% carbonized rubber seed shell produced vulcanizates having processing advantages in time gain and energy consumption, with their physical, chemical, and mechanical properties around the acceptable level for natural rubber compounds but lower than the properties obtained for a 100% carbon black filled vulcanizate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
The cure characteristics and mechanical properties of blends consisting of hydrogenated natural rubber (HNR) and natural rubber (NR) blends were investigated. The HNR/NR blends at 50/50 wt ratio were vulcanized using various cure systems: peroxide vulcanization, conventional vulcanization with peroxide, and efficient vulcanization with peroxide. The HNR/NR vulcanizates cured by the combination of peroxide and sulfur donor (tetramethylthiuram disulfide, TMTD) in the efficient vulcanization with peroxide exhibited the best mechanical properties. It was also found that the hydrogenation level of HNR did not affect the tensile strength of the vulcanizates. The tensile strength of the blends decreased with increasing HNR content because of the higher incompatibility to cause the noncoherency behavior between NR and HNR. However, the HNR/NR vulcanizate at 50/50 wt ratio showed the maximum ultimate elongation corresponding to a co‐continuous morphology as attested to by scanning electron micrographs. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
This study aimed at preparing nanocomposite from epoxidized natural rubber with about 40 mol% epoxidation (ENR40), vinyl acetate ethylene copolymer (VAE) contained about 70 wt% acetate groups and nanosilica (nSiO2). Two parts by weight per hundred parts of rubber/resin of nSiO2 were assembled to 80/20 (w/w) ENR40/VAE blend via latex blending. The resulting nanocomposite latex was coagulated before compounding with curing agents in an internal mixer. Tetrabenzylthiuram disulphide was used as a non‐carcinogenic accelerator in three sulfur vulcanization/curing systems, namely conventional (CV), semi‐efficient (semi‐EV) and efficient (EV) systems. The rubber compounds were sheeted on a two‐roll mill and press‐cured using a compression molding machine. Influence of curing systems on cure characteristics, tensile properties, thermal stability, dynamic mechanical properties and oil resistance of the nanocomposites was investigated. The results revealed that the CV system exhibited the highest crosslink density, tensile properties and storage modulus, while the EV system exhibited the longest scorch and cure time and the highest thermal stability and oil resistance. Moreover, the percentage retention of the tensile properties after thermal aging for CV system was lower than that of semi‐EV and EV systems. However, the pristine ENR40 and 80/20 (w/w) ENR40/VAE blend were also prepared for comparison. J. VINYL ADDIT. TECHNOL., 25:E28–E38, 2019. © 2018 Society of Plastics Engineers  相似文献   

4.
Variation of the crosslink density of a rubber vulcanizate depending on the rubber composition after the thermal aging was studied with single rubber, biblend, and triblend vulcanizates of natural rubber (NR), butadiene rubber (BR), and styrene‐butadiene rubber (SBR). The efficient vulcanization (EV) system was employed to minimize the influence of free sulfur in the vulcanizate on the change of the crosslink density. Thermal aging was performed at 40, 60, and 80°C for 20 days with 5‐day intervals. The crosslink densities of the vulcanizates after the thermal aging increase. For the single rubber vulcanizates, variation of the crosslink density by the thermal aging has the order: SBR > BR > NR. For the biblend vulcanizates, variations of the crosslink densities of the NR/SBR and SBR/BR blends are larger than that of NR/BR blend. Variation of the crosslink density of the vulcanizate increases by increasing the SBR content in the vulcanizate. Variation of the crosslink density of the rubber vulcanizate depending on the rubber composition was explained by miscibility of the blends, combination reaction of the pendent groups, and mobility of the pendent group. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1378–1384, 2000  相似文献   

5.
Mill mixed blend of epoxidized natural rubber and chlorosulfonated polyethylene forms a self-vulcanizable rubber blend during molding at high temperatures in absence of any vulcanizing agent, which is confirmed by FTIR studies. The extent of vulcanization reaction not only depends upon time and temperature of molding but also on the level of epoxidation in ENR and its proportion present in the blend. Physical properties of the blends are comparable to that of conventional rubber vulcanizates. Such blends can be reinforced by carbon black filler.  相似文献   

6.
Hydrogenated natural rubber (HNR) prepared from natural rubber (NR) is a new sustainable elastomer with excellent thermal properties. This study reports on the effect of vulcanization system and blend ratio on the thermal and oxidative resistance of HNR/NR vulcanizates. The various HNR/NR ratios vulcanized by peroxide and sulfur donor system exhibited the highest retention of tensile strength after thermal aging due to the formation of zinc‐dimethyldithiocarbamate (ZDMDC) which is an efficient antioxidant. The results from thermogravimetric analysis (TGA) indicated that the saturated structure of HNR had higher decomposition temperature and activation energy to enhance the thermal stability of HNR/NR vulcanizates. The initial and maximum decomposition temperatures of NR and HNR phases in vulcanizates were not affected by rubber blend ratio. This suggests that the decomposition pattern of HNR has no influence on another constituent. The increase in HNR content in the blends could retard the ozonolysis resulting in the surface cracking attacked by ozone. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
《国际聚合物材料杂志》2012,61(10):1023-1039
This article reports on the physico-mechanical properties, chemical resistance, aging properties, sorption, diffusion, and permeability of ketones (cyclohexanone and acetone) through vulcanizates from blends of natural rubber (NR) and epoxidized low molecular weight natural rubber (ELMWNR) compounded by three different mixing schemes. The compounding ingredients were mixed with the two mentioned rubbers using three different mixing schemes by adopting a semi-efficient sulphur vulcanization compounding formulation. In Scheme 1, the natural rubber and ELMWNR were first mixed before adding the compounding ingredients. In Scheme 2, the compounding ingredients were first mixed with the NR before adding the ELWMNR and in Scheme 3, the compounding ingredients were first mixed with the ELMWNR before adding the NR. The physico-mechanical results of the vulcanizates showed that changes in the mixing schemes significantly influence the tensile properties of the vulcanizates. The tensile strength of the vulcanizates prepared with mixing Scheme 2 were 4.3 MPa lower than vulcanizates from Scheme 1, whereas Scheme 3 was lower than Scheme 1 with 8.5 MPa. The aging results of the vulcanizates from all the mixing schemes were found impressing. The activation energy and free energy change were highest for Scheme 1 whereas the extent of cyclohexanone and acetone penetrations were the lowest with Scheme 1, signifying well crosslinked and ketone resistant vulcanizates.  相似文献   

8.
Thermoplastic natural rubber based on polyamide‐12 (PA‐12) blend was prepared by melt blending technique. Influence of blending techniques (i.e., simple blend and dynamic vulcanization) and types of natural rubber (i.e., unmodified natural rubber (NR) and epoxidized natural rubber (ENR)) on properties of the blends were investigated. It was found that the simple blends with the proportion of rubber ~ 60 wt % exhibited cocontinuous phase structure while the dynamically cured blends showed dispersed morphology. Furthermore, the blend of ENR exhibited superior mechanical properties, stress relaxation behavior, and fine grain morphology than those of the blend of the unmodified NR. This is attributed to chemical interaction between oxirane groups in ENR molecules and polar functional groups in PA‐12 molecules which caused higher interfacial adhesion. It was also found that the dynamic vulcanization caused enhancement of strength and hardness properties. Temperature scanning stress relaxation measurement revealed improvement of stress relaxation properties and thermal resistance of the dynamically cured ENR/PA‐12 blend. This is attributed to synergistic effects of dynamic vulcanization of ENR and chemical reaction of the ENR and PA‐12 molecules. Furthermore, the dynamically cured ENR/PA‐12 blend exhibited smaller rubber particles dispersed in the PA‐12 matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
将三元乙丙橡胶(EPDM)与环氧化天然橡胶(ENR)共交联改性后,再与天然橡胶(NR)共混,考察了ENR共交联改性EPDM/NR共混胶的硫化特性、硫化胶的物理机械性能、溶胀指数和耐热空气老化性能,并对该硫化胶进行了差示扫描量热分析。结果表明,EPDM经过ENR共交联改性后与NR共混,ENR共交联改性EPDM/NR共混胶的交联程度明显提高,各相达到了同步交联,硫化胶的综合性能得到了显著改善。  相似文献   

10.
Hygrothermally decomposed polyurethane (HD‐PUR) was mixed up to 20 phr in epoxidized natural rubber (with 50 mol % epoxidation; ENR50) recipes, and the curing and mechanical behaviors were studied. Mechanical testing of the ENR50/HD‐PUR vulcanizates determined the tensile, tear, compression‐set, hardness, abrasion, hysteresis, and resilience properties. No significant changes were observed in the tensile properties with the incorporation of HD‐PUR. The ENR50 compounds showed an increase in compression set with increasing HD‐PUR content. Rubbers cured by a semi‐efficient vulcanization system gave the best overall performance. A further improvement in curing and mechanical properties was achieved by the carbon black grade N330 being replaced with a more active grade (N375). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2265–2276, 2002  相似文献   

11.
Locally sourced red earth (RE) was air‐dried, pulverized, and screened with a sieve of mesh size 75 nm. It was characterized in terms of its moisture content, loss on ignition, silica content, iodine adsorption number, oil absorption, pH, and metal oxide compositions. Natural rubber, standard Nigerian rubber used for this work was first characterized in terms of its dirt, ash and nitrogen contents, volatile matter, plasticity retention index, and Mooney viscosity. The RE was applied as filler wholly and in blends with standard carbon black, CB (N330) filler in the natural rubber compounding using efficient vulcanization system. The cure and the physicomechanical properties of the compounds and vulcanizates were, respectively, measured as function of filler loading. The results were compared with those of the standard carbon black (N330)‐filled natural rubber. It was found, that the RE‐filled natural rubber showed substantial reinforcement of the rubber, though inferior to carbon black (N330) filled vulcanizates, the tensile strength of the carbon black‐filled vulcanizates is about one half times that of the RE‐filled vulcanizates. The tensile properties of the RE‐filled vulcanizates improved markedly by blending the RE‐filler with the carbon black (N330). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
The effects of crosslink structures on the dynamic mechanical properties (DMPs) of unfilled and carbon black N330‐filled natural rubber (NR) vulcanizates cured with conventional (CV), semiefficient (SEV), and efficient (EV) cure systems and having about the same total crosslink densities were investigated before and after aerobic and anaerobic aging at 100°C. The three unfilled NR vulcanizates cured with the CV, SEV, and EV systems had about the same mechanical loss factor (tan δ) values at about 0°C but showed some apparent differences in the tan δ values in the order EV > SEV > CV at relatively high temperatures of 40–80°C before aging. However, N330‐filled NR vulcanizates gave higher tan δ values than the unfilled vulcanizates and showed little effect of the crosslink types on the tan δ at different temperatures over the glass‐transition temperature (Tg) before aging. Aerobic heat aging increased the Tg and tan δ values of the vulcanizates over a wide range of temperatures from ?80 to 90°C that was mainly due to the changes in the total density and types of crosslinks. The unfilled vulcanizates cured with the CV system showed the greatest change in DMP because of their poor resistance to heat aging. Aerobic heat aging of NR vulcanizates caused a more significant change in the DMP than anaerobic heat aging because of the dominant effect of the oxidative degradation during aerobic heat aging on the main‐chain structure, crosslink structures, and DMPs of the vulcanizates. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 710–718, 2001  相似文献   

13.
Rubber toughened poly(lactic acid) (PLA) was prepared by blending with natural rubber (NR)‐based polymers. The blends contained 10 wt % of rubber and melt blended with a twin screw extruder. Enhancement of impact strength of PLA was primarily concernced. This study was focused on the effect of rubber polarity, rubber viscosity and molecular weight on mechanical properties of the blends. Three types of rubbers were used: NR, epoxidized natural rubber (ENR25 and ENR50), and natural rubber grafted with poly(methyl methacrylate) (NR‐g‐PMMA). Effect of viscosity and molecular weight of NR, rubber mastication with a two‐roll mill was investigated. It was found that all blends showed higher impact strength than PLA and NR became the best toughening agent. Viscosity and molecular weight of NR decreased with increasing number of mastication. Impact strength of PLA/NR blends increased after applying NR mastication due to appropriate particle size. DMTA and DSC characterization were determined as well. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
《国际聚合物材料杂志》2012,61(12):1095-1114
Physico-mechanical, aging, swelling, solubility, and permeability properties of blends of natural rubber and thioglycollic acid modified epoxidized low molecular weight natural rubber (TGA-ELMWNR) filled with admixtures of carbon black and carbonized rubber seed shell (CRSS) in ketones, alcohols, aldehydes, and petroleum fuels (petrol, kerosene, and diesel) were investigated as a function of different filler composition. The physico-mechanical properties were found reducing as the level of CRSS increases, but were within the accepted level for natural rubber compounds, showing that CRSS can find uses as fillers in materials of low tensile strength. The aging results of all the mixes were nearly of the same magnitude. The swelling and solubility results showed that ketones swell the vulcanizates more and faster than alcohols and than aldehydes. The sorption, diffusion, and permeability of the blends as determined by the gravimetric method confirm the better resistance of blends with higher ratio of carbon black. Petrol was found diffusing through the vulcanizates faster than kerosene and faster than diesel. Above all, replacement of carbon black with 15% carbonized rubber seed shell has not shown any serious deleterious effects on the vulcanizates.  相似文献   

15.
Natural astaxanthin is a natural substance extracted from algae such as Haematococcus pluvialis. Its molecular structure contains conjugated double bonds as well as keto and hydroxyl groups, and therefore it has high activity. In this research, natural astaxanthin was used to modify the surface of the silica, and its effects on natural rubber vulcanization properties, physical and mechanical properties, dynamic properties, and antiaging properties were studied by means of rubber process analyzer, dynamic mechanical anaylsis, and scanning electron microscopy. The results showed that natural astaxanthin-modified silica could reduce the degree of delayed vulcanization. At the same time, the resilience and abrasion resistance of the obtained vulcanizates were increased. The DIN abrasion volume of the vulcanizates modified and reinforced by the second strategy decreased by 19.2% and 23.6%, respectively; the Payne effect of the natural astaxanthin-modified silica/NR composites was weakened, and the dispersibility of the filler and the compatibility with the rubber matrix was significantly improved. Regardless of which strategy was used to modify the silica, the vulcanizates had a lower rolling resistance. Specially, it could greatly improve the hot air aging resistance property of rubber. Natural astaxanthin as being a renewable feedstock is expected to have a quite broad applications in the rubber industry. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 136, 47287.  相似文献   

16.
陈珂  王蕊 《弹性体》2013,23(3):9-12
利用环氧化天然胶乳作为界面改性剂,采用胶乳共混法将聚乙烯醇(PVA)溶液同天然胶乳进行混溶,制备了PVA/天然橡胶(NR)的共混物,通过电子万能材料试验机、动态热机械分析仪、热老化箱和臭氧老化箱,研究了共混物力学性能、玻璃化转变温度、老化性能以及耐溶剂抽出性。结果表明,PVA的加入明显提高了NR的撕裂强度和硬度,而共混物的拉伸强度和断裂伸长率随着PVA含量的增加都出现下降的趋势;随着PVA含量的增加,NR的玻璃化转变温度呈现先增加后降低的趋势;随着PVA含量增加,共混物各试样对乙醇的耐抽出能力相差不大,对水的耐抽出能力逐步变弱。热空气老化对材料的力学性能影响明显,而臭氧老化由于时间较短,对材料的力学性能影响不明显。老化实验对材料的性能变化率影响显著。  相似文献   

17.
Physico-mechanical, aging, swelling, solubility, and permeability properties of blends of natural rubber (NR) and thioglycollic acid modified epoxidized low molecular weight natural rubber (TGA-ELMWNR) filled with admixtures of carbon black (CB) and carbonized rubber seed shell (CRSS) in ketones, alcohols, aldehydes, and petroleum fuels (petrol, kerosene, and diesel) were investigated as a function of different filler compositions. The physico-mechanical properties were found decreasing as the level of CRSS increases, but were within the accepted level for natural rubber compounds, showing that CRSS can find uses as fillers in materials of low tensile strength. The aging results of all the mixes were nearly of the same magnitude. The swelling and solubility results showed that ketones swell the vulcanizates more and faster than alcohols and aldehydes. The sorption, diffusion, and permeability of the blends as determined from the gravimetric method confirm the better resistance of blends with higher ratio of carbon black. Petrol was found diffusing through the vulcanizates faster than kerosene and faster than diesel. Above all, replacement of carbon black with 15% carbonized rubber seed shell has not shown any serious deleterious effects on the vulcanizates.  相似文献   

18.
Physico-mechanical, aging, swelling, solubility, and permeability properties of blends of natural rubber (NR) and thioglycollic acid modified epoxidized low molecular weight natural rubber (TGA-ELMWNR) filled with admixtures of carbon black (CB) and carbonized rubber seed shell (CRSS) in ketones, alcohols, aldehydes, and petroleum fuels (petrol, kerosene, and diesel) were investigated as a function of different filler compositions. The physico-mechanical properties were found decreasing as the level of CRSS increases, but were within the accepted level for natural rubber compounds, showing that CRSS can find uses as fillers in materials of low tensile strength. The aging results of all the mixes were nearly of the same magnitude. The swelling and solubility results showed that ketones swell the vulcanizates more and faster than alcohols and aldehydes. The sorption, diffusion, and permeability of the blends as determined from the gravimetric method confirm the better resistance of blends with higher ratio of carbon black. Petrol was found diffusing through the vulcanizates faster than kerosene and faster than diesel. Above all, replacement of carbon black with 15% carbonized rubber seed shell has not shown any serious deleterious effects on the vulcanizates.  相似文献   

19.
Natural rubber (NR) was blended with chlorosulfonated polyethylene (CSM) with various formulation and blend ratios (NR/CSM: 80/20 –20/80, wt/wt). Rubber blends were prepared by using a two‐roll mill and vulcanized in a compression mold to obtain the 2 mm‐thick sheets. Tensile properties, tear resistance, thermal aging resistance, ozone resistance, and oil resistance were determined according to ASTM. Compatible NR/CSM blends are derived from certain blends containing 20–30% CSM without adding any compatibilizing agent. Tensile and tear strength of NR‐rich blends for certain formulations show positive deviation from the rule of mixture. Thermal aging resistance depends on formulation and blend ratio, while ozone and oil resistance of the blends increase with CSM content. Homogenizing agents used were Stuktol®60NS and Epoxyprene®25. Stuktol®60NS tends to decrease the mechanical properties of the blends and shows no significant effect on blend morphology. Addition of 5–10 phr of epoxidized natural rubber (ENR, Epoxyprene® 25) increases tensile strength, thermal aging resistance, and ozone resistance of the blends. It is found that ENR acts as a compatibilizer of the NR/CSM blends by decreasing both CSM particle size diameter and α transition temperature of CSM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 127–140, 2006  相似文献   

20.
This article reports on the physico-mechanical properties, chemical resistance, aging properties, sorption, diffusion, and permeability of aldehydes (acetaldehyde and formaldehyde) through vulcanizates from blends of natural rubber (NR) and low molecular weight natural rubber (LMWNR) compounded by three different mixing schemes. The compounding ingredients were mixed with the two mentioned rubbers using three different mixing schemes by adopting the semi-efficient sulphur vulcanization compounding formulation. In scheme 1, the natural rubber and LMWNR were first mixed before adding the compounding ingredients. In scheme 2, the compounding ingredients were first mixed with the NR before adding the LWMNR and in scheme 3, the compounding ingredients were first mixed with the LMWNR before adding the NR. The physico-mechanical results of the vulcanizates showed that changes in the mixing schemes significantly influence the tensile properties of the vulcanizates. The tensile strengths of the vulcanizates prepared with mixing scheme 2 were 3.5 MPa lower than vulcanizates from scheme 1, whereas scheme 3 was lower than scheme 1 by 7.8 MPa. The aging result of the vulcanizates from all the mixing schemes were found to be similar. The activation energy and free energy change were highest with scheme 1 whereas the extent of acetaldehyde and formaldehyde penetrations were lowest with scheme 1, signifying a well crosslinked and aldehyde-resistant vulcanizate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号