首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 953 毫秒
1.
利用动态版岩石破裂过程分析系统(RFPA~(2D))模拟岩体加载和卸载过程岩体内部裂纹起裂、扩展的演化规律,研究加载和卸载条件岩体内部裂纹开裂异同;通过不同压力条件下圆形隧洞围岩开裂分布特征模拟及分析,探索高地应力条件下地下洞室开挖卸荷引起的应力效应及其对围岩开裂的影响,并依据声发射(AE)作为瞬态卸荷引起岩体开裂的判据研究动态卸荷引起的围岩开裂范围。研究表明:开挖卸荷是深埋隧洞围岩发生开裂的重要原因;卸荷持续时间越短引起的围岩开裂范围越大;围岩开裂深度及范围随着侧压力系数增加而增大,且侧压力系数不等于1时,高地应力条件圆形隧洞围岩开裂区域近似呈V型。  相似文献   

2.
 爆破荷载和地应力的瞬态卸载是深埋隧洞开挖损伤区孕育及演化的重要影响因素。根据深埋圆形隧洞爆破开挖过程,采用理论模型和数值模拟相结合的方法分析开挖面上各段爆破引起的爆炸荷载和地应力瞬态卸载应力场的变化规律,并比较各段爆破开挖对隧洞保留岩体的损伤程度。计算结果表明,爆炸荷载对围岩岩体造成的破坏主要是张拉破坏或张剪破坏,地应力瞬态卸载造成的破坏主要是压剪破坏;各段开挖爆炸荷载和地应力瞬态卸载对最终的开挖损伤区均有贡献,体现了重复扰动损伤效应,其中以MS7和MS9段的影响最大,表明各段开挖对最终损伤程度的影响不仅与荷载值的大小有关,与各段的开挖半径同样关系密切;当地应力水平不断提高时,地应力瞬态卸载对损伤区的贡献也会越来越明显;当深埋隧洞开挖的爆破参数相同时,地应力水平将成为围岩损伤的决定性因素。  相似文献   

3.
针对深埋圆形隧洞全断面爆破开挖,分析了岩体开挖瞬态卸荷力学过程及引起的围岩应力和应变能瞬态调整机制,讨论了瞬态卸荷动力效应的影响因素。计算结果表明,开挖岩体应变能越大、应变能释放速率越快,岩体开挖瞬态卸荷动力扰动越强烈。基于此,提出了依据炮孔周围爆生裂纹分布判断掌子面上主应力方向,各圈炮孔按掌子面上应变能密度由高到低的顺序分段起爆的施工期岩爆防治方法。该方法通过改变炮孔起爆网络显著地降低了岩体开挖瞬态卸荷的动力效应,可广泛用于水电、矿山、交通等行业深埋洞室贯通爆破。  相似文献   

4.
开挖卸荷的瞬态特性研究   总被引:14,自引:3,他引:11  
  针对中、高地应力条件下的岩体爆破开挖,通过岩体开挖荷载释放过程的力学分析及卸荷持续时间的计算,提出并论证岩体开挖荷载的释放为瞬态卸荷的观点,认为在中、高地应力条件下,岩体开挖荷载的释放需要考虑荷载的瞬态特性及其动力效应。同时,对与分段微差爆破对应的分步开挖荷载、瞬态卸荷方式、开挖卸荷诱发围岩振动及节理岩体瞬态卸荷松动机制等关键问题进行讨论。最后,结合二滩和瀑布沟等高地应力地区水电站地下厂房开挖瞬态卸荷诱发围岩振动的实测资料及观察到的动力破坏现象,对所提出的观点进行例证。  相似文献   

5.
针对深埋圆形隧洞,计算2种不同开挖方式下围岩的开裂范围及裂纹扩展长度,分析围岩开裂过程中的能量耗散规律,并采用可释放弹性应变能指标,判定岩爆发生的等级和位置。研究结果表明:与隧道掘进机开挖引起的准静态卸荷相比,钻爆法开挖诱发的瞬态卸荷加剧了围岩开裂效应,导致开裂过程中能量耗散值增大,使得开挖卸荷后围岩可释放弹性应变能减小,发生时滞型岩爆的风险降低;但由于受瞬态卸荷过程中能量高聚集特性的影响,可释放弹性应变能提高,钻爆法开挖发生即时型岩爆的风险增大。  相似文献   

6.
爆破引起的开挖面上岩体地应力快速释放是深埋洞室爆破施工主要动力扰动因素之一。针对深埋圆形隧洞全断面毫秒延迟爆破开挖过程,分析开挖面上地应力瞬态卸荷诱发围岩振动的力学机制及其影响因素,在此基础上从掏槽方式选择、孔网参数布置、起爆网路优化的角度详细探讨诱发振动的控制方法。研究表明,通过设计合理的钻爆参数可降低开挖面上的地应力、延长卸荷持续时间、减小开挖面的大小,从而达到控制地应力瞬态卸荷诱发围岩振动的目的。研究成果对深地资源开采、深地空间开发利用等相关行业的深埋洞室爆破施工具有一定的指导作用。  相似文献   

7.
采用理论分析、动力有限元数值模拟和振动监测数据对比等综合方法,研究高地应力条件下隧洞钻爆开挖诱发围岩振动的特征。发现高地应力条件下深埋隧洞钻爆开挖诱发的围岩振动由爆破振动和岩体初始地应力(开挖荷载)动态卸载诱发振动两部分叠加而成。在低岩体初始应力条件下,隧洞钻爆开挖过程围岩振动主要由爆炸荷载所引起;高地应力条件下,开挖荷载瞬态卸荷诱发振动的幅值可超过爆破振动而成为围岩振动的主要因素。利用四川省瀑布沟水电站引水隧洞进口段(地应力水平10 MPa)和尾水隧洞洞身段(地应力水平20 MPa)钻爆开挖过程的实测围岩振动资料,对理论分析和数值模拟结果进行验证。  相似文献   

8.
高地应力条件下隧洞开挖诱发围岩振动特征研究   总被引:4,自引:1,他引:4  
 采用理论分析、动力有限元数值模拟和振动监测数据对比等综合方法,研究高地应力条件下隧洞钻爆开挖诱发围岩振动的特征。发现高地应力条件下深埋隧洞钻爆开挖诱发的围岩振动由爆破振动和岩体初始地应力(开挖荷载)动态卸载诱发振动两部分叠加而成。在低岩体初始应力条件下,隧洞钻爆开挖过程围岩振动主要由爆炸荷载所引起;高地应力条件下,开挖荷载瞬态卸荷诱发振动的幅值可超过爆破振动而成为围岩振动的主要因素。利用四川省瀑布沟水电站引水隧洞进口段(地应力水平10 MPa)和尾水隧洞洞身段(地应力水平20 MPa)钻爆开挖过程的实测围岩振动资料,对理论分析和数值模拟结果进行验证。  相似文献   

9.
深部岩体开挖方式对损伤区影响的试验研究   总被引:5,自引:1,他引:4  
 深埋隧洞开挖过程中,钻爆法和TBM开挖所对应的不同围岩应力调整路径对开挖损伤区的形成有重要影响,但这一影响尚未引起足够的重视。依托锦屏二级水电站深埋隧洞群的开挖,通过损伤区原位检测试验对比分析2种不同开挖方式下围岩损伤区的特性及形成原因;作为现场试验的补充,在考虑锦屏大理岩基本力学特性和应力瞬态调整效应的基础上,采用数值方法比较应力瞬态和准静态调整所分别形成的开挖损伤区大小。试验结果表明,锦屏二级引水隧洞钻爆开挖的洞段,内损伤区(即严重损伤区)深度可以占到总损伤区深度的50%以上,岩体基本失去承载力。另外,此区域在断面上的分布特性受到开挖二次应力场的影响,表明伴随爆破过程发生的地应力瞬态卸载效应是内损伤区形成的直接原因之一;而TBM开挖洞段,内损伤区深度约占总损伤区深度的30%,该区域的形成可能更多地受到锦屏大理岩强度时间效应的影响,是表面应力松弛破坏逐渐发展的结果;考虑锦屏大理岩脆–延–塑性转换特性和应力瞬态调整效应后,可以利用数值计算方法较为客观地估计不同开挖应力路径下围岩开挖损伤区的范围。研究结论对深埋隧洞开挖方式选择及支护策略制定具有借鉴意义。  相似文献   

10.
为了研究高地应力条件下节理岩体的卸荷松动效应,设计一套高地应力条件下节理岩体开挖卸荷松动的室内试验模拟系统,利用岩条受压后的快速断裂失稳,有效实现单轴受压节理岩体试件的应力快速卸载,模拟出高地应力瞬态卸荷引起的岩体松动效应,从而更好地论证高地应力条件下岩体开挖荷载瞬态卸荷(ELTU)引起的节理岩体的松动效应,并利用试验模拟的方法研究开挖荷载瞬态条件下节理岩体松动效应与初始地应力的相互关系。试验结果表明,地应力瞬态卸荷产生的节理面张开位移与卸荷初始应力的平方存在一定的正比关系,节理面的数量以及与开挖卸荷部位的距离影响各节理面处的张开位移在开挖卸荷总位移量中所占比例。  相似文献   

11.
锦屏一级水电站地下厂房围岩开裂变形机制研究   总被引:8,自引:5,他引:3  
针对锦屏一级水电站地下厂房高应力、低强度应力比条件下开挖施工引起的围岩变形开裂及相关力学问题,从全空间赤平投影解析、平面投影应力特征等多角度全方位研究地下厂房区地应力场分布特征及规律;并结合力学定性分析和三维数值模拟等手段对地下洞室群围岩变形开裂机制进行深入分析,研究洞室群围岩开挖损伤演化规律。研究表明,锦屏一级地下厂房区域出现的围岩、喷层较大变形乃至破坏现象本质上是由高地应力和相对较低的岩体强度形成的不利组合所造成的,在主厂房、主变室的拱腰、拱座和边墙以及母线洞侧墙等部位出现的开裂破坏,属于典型的高应力、低强度应力比条件下围岩的卸荷变形与破坏。提出锦屏地下厂房围岩变形开裂概化模型,为地应力场反演和施工过程的数值仿真分析提供重要参考和定性依据;最后针对开挖维护围岩稳定性问题提出相应的建议,为锦屏一级地下厂房的开挖施工及动态支护设计提供技术支持。  相似文献   

12.
As energy release plays an important role in engineering disasters such as rockburst, seismicity induced by deep rock mass excavation via drill and blast, energy changes caused by excavation have been studied for a long time. However, previous studies ignored the time factor and took the unloading of in-situ stress on the excavation boundary as a quasi-static process. In this paper, energy changes induced by quasi-static unloading of in-situ stress (QSUIS) and transient release of in-situ stress (TRIS) were analyzed for the case of circular excavation under the condition of in-situ hydrostatic stress. Results show that, different from energy changes caused by QSUIS, the dynamic adjustment of strain energy induced by TRIS which first decreases and then increases, is a transient process. With the propagation of the unloading stress wave from the excavation boundary to the far surrounding rock masses, energy is transmitted by the way of radial stress doing work from the far surrounding rock masses to the near ones which causes the transient aggregation of strain energy. Comparison based on the effects of energy changes on the damage range indicates that higher aggregation degree of strain energy causes larger damage range induced by TRIS than that induced by QSUIS. In addition, a practical application in Jinping II hydropower project was presented as a verification.  相似文献   

13.
深埋隧洞爆破开挖损伤区检测及特性研究   总被引:4,自引:3,他引:1  
 通过对锦屏二级辅助洞爆破开挖损伤区的检测和数值计算,比较岩体开挖动态过程(包括爆炸荷载和地应力高速释放)及静态过程(地应力重分布)所分别造成的损伤,探明地应力瞬态释放诱发岩体损伤的机制。检测结果表明,地应力的存在对深埋隧洞爆破开挖损伤区具有较大影响。隧洞轴线垂直于最大主应力时的钻爆开挖损伤明显要大于轴线平行于最大主应力时的情况;可以将开挖损伤区分为内损伤区和外损伤区,其中前者主要由爆炸荷载和地应力高速释放二者耦合作用引起,其主要特征是岩体声波速度显著降低;后者主要由应力重分布引起,特征是岩体声波速度缓慢降低。另外,辅助洞实测的岩体内损伤区深度显著大于外损伤区深度,且内损伤区在断面上的分布特性受到开挖二次应力场的影响,表明伴随爆破过程发生的地应力瞬态卸载效应是内损伤区形成的直接原因之一,声波检测检测和数值模拟计算均也证明了这一点。  相似文献   

14.
 目前国际上普遍认为完整岩体的现场强度近似等于(0.4?0.1)?c,其中,?c为室内岩石单轴抗压强度。此外,也有学者建议原位岩体的破坏强度,即地下工程围岩的启裂强度,可等价于室内单轴压缩试验或现场微震监测确定的岩石裂隙初始的应力;其原理主要以基于Kirsch解析解或简化的数值模拟(光滑的开挖边界)来近似表达隧道开挖面上的最大切向应力?max。然而,这些方法均忽略了开挖边界的几何非规则性对计算结果的影响。经论证表明,若考虑开挖面的几何非规则性因素,完整岩体的现场破坏强度并不等于(0.4?0.1)?c,其破坏强度可高达(0.8?0.05)?c。以加拿大地下实验室Mine-by试验隧道为例,并以该隧道的实际断面形状为几何边界条件,采用有限元软件Phase 2模拟隧道围岩的渐进破坏过程。研究结果表明,当原位岩体强度为0.8?c时,模拟结果与实际观测结果具有很好的一致性。因此,忽略开挖边界的几何非规则性而解读的原位岩体强度(0.4?0.1)?c仅是“等价”强度值,其低估了岩体的实际强度。  相似文献   

15.
 基于淮南5个煤矿区的水压致裂法地应力测量结果,揭示淮南煤矿区的地应力特征及其随岩性的变化规律,分析开挖后围岩应力特征及塑性区变化规律,初步得出如下结论:(1) 淮南5个煤矿区地应力以构造应力场为主,属高应力区;(2) 岩性对岩体地应力侧压系数影响大,砂岩区岩体地应力侧压系数为1.52~1.87,泥岩区岩体地应力侧压系数为1.08~1.18;(3) 岩性是影响围岩塑性区特征的重要因素。由于岩性的差异,最大主应力相近的潘一煤矿和顾桥煤矿南区围岩塑性区范围有较大差异。与此同时,刘庄煤矿实测部位最大水平主应力小于潘一煤矿,但由于矿区测试部位的岩性为灰泥岩,围岩塑性区范围明显大于岩性为石英砂岩的潘一煤矿。研究结果可为类似巷道围岩的变形破坏机制分析以及巷道加固支护提供参考。  相似文献   

16.
地应力释放对盾构隧道围岩稳定性和地表沉降变形的影响   总被引:5,自引:6,他引:5  
针对广州地铁二号线越秀公园—三元里区间隧道,采用弹塑性有限元法分析了地应力释放对盾构隧道围岩强度和变形以及地表沉降变形的影响。计算结果显示:随着地应力释放值增加,隧道开挖面洞周拱顶、拱底、拱腰变形增大,围岩塑性区明显扩大,由稳定状态向不稳定状态转化;地表沉降变形也大大增加。  相似文献   

17.
地应力、围岩弹性模量等参数的测定是岩石力学和工程地质学的重要研究课题之一。虽然已有许多有效的测定方法,但并非都能满足工程设计的要求。因此,一种有别于传统地应力量测方法的TBA位移反分析法被提出,并对相应的基本原理和方法进行讨论。为说明TBA法的实用性,给出了在“引大入秦”和三峡船闸边坡等工程中的应用实例。  相似文献   

18.
深部地下洞室施工期围岩大变形机制分析   总被引:1,自引:0,他引:1  
大岗山水电站引水发电系统地下洞室埋深大,花岗岩因风化卸荷强烈,岩脉破碎带发育,应力较高。在施工过程中,岩脉、断层穿越的主变室部位出现较大的变形,严重影响施工安全与进度。采用地质调查和现场监测的方法,结合现场施工情况分析主变室围岩大变形特征和机制,提出2种可能的大变形破坏模式,分析影响围岩大变形的因素,并评价主变室的稳定性。研究结果表明:主变室围岩大变形主要受辉绿岩脉8 1和断层f59,f60控制,同时,地应力高、施工强度大、支护进度滞后加剧围岩的大变形。深部地下洞室施工期的地质调查及现场监测可以及时预测高应力区卸荷围岩的大变形,以确保洞室施工期的稳定安全。研究成果对类似工程具有重要的参考价值。  相似文献   

19.
 为研究深埋隧洞围岩卸载路径破坏特性,在现场深埋试验平洞内进行大理岩原位高压真三轴卸载试验,获得大尺度(50 cm×50 cm×100 cm)、高应力( =11.2 MPa)、真三轴( > > )、卸 破坏状态下,能反映深埋隧洞围岩实际应力状态和隧洞开挖应力路径的大理岩全过程应力–应变曲线和三轴强度。在高压卸载路径大理岩原位真三轴试验基础上,引入H-B经验强度准则研究大理岩卸载路径真三轴强度参数。研究成果表明:(1) 对于大理岩卸载真三轴原位试验,按H-B经验强度准则评估卸载路径真三轴强度偏低情况较多,评估经验参数s = 0.003 951 7,mb = 3.414,而由试验成果反算s = 0.095 53,mb = 12.208。(2) 在H-B经验强度准则基础上,按M-C强度准则,评估大理岩卸载真三轴试验强度参数:tan? = 1.39,c = 6.61 MPa,评估未扰动大理岩卸载真三轴强度参数:tan? = 1.60,c = 6.73 MPa,前者可代表卸荷损伤岩体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号