首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A series of new smectic and cholesteric liquid crystalline elastomers was prepared by graft polymerization of mesogenic monomer with the chiral and nonmesogenic crosslinking agent using polymethylhydrosiloxane as backbone. The chemical structures of the monomers and polymers obtained were confirmed by Fourier transform infrared (FTIR), proton nuclear magnetic resonance spectra (1H‐NMR). The mesomorphic properties were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and X‐ray diffraction measurements (XRD). M1 showed smectic (SB, SC, SA) and nematic phases during the heating and the cooling cycles. Polymer P0 and elastomer P1 exhibited smectic B phase, elastomers P2–P5 showed smectic A phase, P6 and P7 showed cholesteric phase, and P8 displayed stress‐induced birefringence. The elastomers containing less than 15 mol % M2 displayed elasticity and reversible phase transition with wide mesophase temperature ranges. Experimental results demonstrated that the glass transition temperatures decreased first and then increased; melting temperatures and the isotropization temperatures and the mesophase temperature ranges decreased with increasing content of crosslinking unit. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 498–506, 2005  相似文献   

2.
In this study, we prepared two series of new side‐chain cholesteric liquid‐crystalline elastomers (PI and PII) derived from the same chiral bisolefinic crosslinking units and different nematic liquid‐crystalline monomers. The chemical structures of the monomers and polymers obtained were confirmed by Fourier transform infrared and 1H‐NMR spectroscopy. The phase behavior properties were investigated by differential scanning calorimetry, thermogravimetric analysis, and polarizing optical microscopy. The effect of the length of the carbochain on the phase behavior of the elastomers was investigated. The polymers of the PI and PII series showed similar properties. Polymer P1 showed a nematic phase, P2–P7 showed a cholesteric phase, and P4–P7, with more than 6 mol % of the chiral crosslinking agent, exhibited a selective reflection of light. The elastomers containing less than 15 mol % of the crosslinking units displayed elasticity, a reversible phase transition with wide mesophase temperature ranges, and a high thermal stability. The experimental results demonstrate that the glass‐transition temperatures first decreased and then increased; the isotropization temperatures and the mesophase temperature ranges decreased with increasing content of crosslinking agent. However, because of the different lengths of the carbochain, the glass‐transition temperatures and phase‐transition temperatures of the PI series were higher than those of the PII series, and the PI and PII elastomers had their own special optical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1204–1210, 2005  相似文献   

3.
A series of new chiral side‐chain liquid‐crystalline polymers were prepared containing smectic‐nematic monomer and nonmesogenic chiral monomer. All polymers were synthesized by graft polymerization using polymethylhydrosiloxane as backbone. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy, thermogravimetric analyses, and X‐ray diffraction measurements. The chemical structures of the monomers and polymers obtained were confirmed by Fourier transform infrared, proton nuclear magnetic resonance spectra (1H NMR). M1 showed smectic (SB, SC) and nematic phase on the heating and the cooling cycle. Polymers P0–P2 were in chiral smectic A phase, while P3–P5 were in cholesteric phase, P6 has bad LC properties, and P7 has no LC properties. Experimental results demonstrated that nonmesogenic chiral moiety and LC mesogenic with long carbochain offered the possibility of application because of its lower glass transition temperature, and the glass transition temperatures and isotropization temperatures and the ranges of the mesophase temperature reduced with increasing the contents of chiral agent. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
In the present work, the phase behaviors of two series of side‐chain liquid crystalline elastomers ( PI and PII series) derived from the same nematic liquid crystalline monomer and the different rigidity of chiral bisolefinic crosslinking units have been compared and studied extensively, and the effect of the different rigidity of crosslinker on the phase behavior of elastomers has been discussed. The chemical structure of the monomers and polymers obtained were confirmed by FTIR and 1H NMR spectroscopy. The phase behaviors were investigated by differential scanning calorimetry, polarizing optical microscopy measurement, thermogravimetric analyses, and X‐ray diffraction measurement. The two series of elastomers showed smectic or cholesteric phases. When the amount of different crosslinking units was less than 15 mol %, both of the elastomers displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. It is shown that the isotropization temperature values of PII series are higher than those of PI series, and the glass transition temperature values of PII series varied smoothly and that of PI series changed smoothly first and then abruptly with increasing the contents of crosslinkers with different rigidity. In addition, PI series showed an interesting change in LC texture near clearing point, but PII series did not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
A series of cyclosiloxane‐based cholesteric liquid crystalline elastomers were synthesized by using cholest‐5‐en‐3‐ol(3β)‐4‐(2‐propenyloxy)benzoate and a soft nonmesogenic crosslinking agent, acryloyl‐hexyl acrylate. The polymers were prepared in a one‐step reaction with the crosslinking contents ranging between 0 and 5.6 weight %. The effective crosslink density (Mc) was determined by swelling experiments employing Flory–Rehner models. All the polymers exhibited thermotropic LC properties and revealed a cholesteric phase. With increase of the crosslinking component in the polymers, the melting behavior disappeared and the enthalpy of transition decreased. But the temperature of glass transition and clear point changed little and did not show uptrend or downtrend. Reflection spectra of the cholesteric mesophase of the polymers showed that the reflected wavelength became broad and shifted to long wavelength with increase of the soft crosslinking component in the polymer systems. All these results originate from the effect of the soft nonmesogenic chemical crosslinking. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 625–631, 2005  相似文献   

6.
A new chiral mesogenic monomer (MLC) based on menthyl groups and the corresponding cholesteric elastomers (LCE1–LCE3) were prepared. Their chemical structures and purity were characterized by Fourier transform infrared, nuclear magnetic resonance and elemental analyses. The liquid crystalline properties were investigated by differential scanning calorimetry, polarizing optical microscopy, thermogravimetric analysis and X‐ray diffraction. The selective reflection of light for MLC was characterized with ultraviolet/visible/near infrared. The effect of the content of crosslinking units on the liquid crystalline behaviour of LCE1–LCE3 is discussed. The experimental results show that the chiral monomer and the corresponding elastomers containing menthyl groups can show mesomorphism when a flexible linkage chain is inserted between the mesogenic core and the bulky terminal menthyl fragments to reduce the steric effect. MLC exhibited a chiral smectic C phase, a cholesteric phase and a cubic blue phase. LCE1–LCE3 with a low content of crosslinking units showed a cholesteric phase because of the introduction of the nematic crosslinking unit. With increasing content of crosslinking units, the corresponding glass transition temperature increased, while the clearing temperature decreased. Thermogravimetric analysis showed that LCE1–LCE3 have good thermal stability. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
A series of new thermochromic side‐chain liquid–crystalline polymers were prepared. The chemical structures of the resulting monomers and polymers were characterized by element analyses, FTIR, 1H‐NMR, and 13C‐NMR. Their mesogenic properties were investigated by differential scanning calorimetry, thermogravimetric analyses, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the content of dye groups on phase behavior of the polymers was discussed. The polymers P1–P3 showed smectic phase, and P4–P7 revealed cholesteric phase. The polymers containing less than 30 mol % of the dye groups showed good solubility, reversible phase transition, wider mesophase temperature ranges, and higher thermal stability. Experimental results demonstrated that the clearing temperature and mesophase temperature ranges decreased with increasing the concentration of the dye groups. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 329–335, 2005  相似文献   

8.
The synthesis of the new chiral monomer 4‐(10‐undecylen‐1‐yloxy)biphenyl‐4′‐[(S)‐2‐methyl‐1‐bu‐ toxy]benzoate (M1), the nematic crosslinking agent biphenyl 4,4′‐bis(10‐undecylen‐1‐yloxybenzoate) (M2), and the corresponding liquid‐crystalline elastomer is described. The chemical structures of the chiral monomer and crosslinking agent have been characterized with Fourier transform infrared, elemental analyses, and proton and carbon‐13 nuclear magnetic resonance spectra. The mesomorphic properties have been investigated with differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction. Monomer M1 shows different smectic phases (smectic A, chiral smectic C, and smectic B) and a cholesteric phase, and M2 exhibits a nematic phase. The liquid‐crystalline elastomer shows smectic A and chiral smectic C phases. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4234–4239, 2006  相似文献   

9.
The synthesis of a new chiral mesogenic monomer ( M1 ), a nematic monomer ( M2 ), and a series of side chain cholesteric copolymers ( P2 – P6 ) containing the mesogenic menthyl groups is described. The chemical structures of the compounds were confirmed by FTIR and 1H NMR. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, thermogravimetric analysis, and polarizing optical microscopy. M 1 showed an enantiotropic cholesteric phase, and M2 revealed a nematic phase. The homopolymers P1 and P7 , respectively, displayed a chiral smectic A (SA) phase and a nematic phase, while the copolymers P2 – P6 exhibited the Grandjean texture of the cholesteric phase. Tg, Ti, and ΔT of P1 – P7 increased with increasing the concentration of M2 in the polymers. All of the obtained polymers displayed very good thermal stability and the wide mesophase temperature range. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Liquid‐crystalline monomer cholesteryl 4‐allyloxybenzoate (M1), new ionic mesogenic monomer cholesteryl 4‐allyloxy‐3‐(potassium sulfonate)benzoate (M2), and corresponding polymer P1 and ionomer P2 were synthesized. The chemical structures of the monomers and homopolymer were confirmed with Fourier transform infrared and 1H‐NMR spectroscopy. The mesogenic properties were studied with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The effect of the ionic units on the phase behavior was examined. M1 showed a cholesteric phase, and M2 revealed a smectic A phase. P1 and P2 displayed smectic A phases. The experimental results demonstrated that the addition of ionic units to the mesogenic molecule not only affected the phase‐transition temperature but also changed the mesogenic phase type. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2511–2516, 2004  相似文献   

11.
To study the effect of the content of the nematic cross-linking units on the mesophase behaviors, the optical and mesomorphic properties of liquid crystalline elastomers (LCEs), aseries of LCEs have been synthesized by hydrosilylation reaction with poly(methylhydrogeno)siloxane, a cholesteric liquid crystalline monomer, and a nematic cross-linking agent. The chemical structures and properties of the synthesized LCEs have been investigated by use of various techniques. Homopolymer P0 bearing only cholesteric component displays a smectic A phase, but elastomers P1-P5 containing different content of nematic cross-linking units show a cholesteric mesophase. The reflection wavelengths of theLCEs show a weak temperature dependence at lower temperatures but a strong temperature dependence at higher temperatures. Furthermore, the maximum reflection wavelengths of the LCEs can be stabilized over a wide temperature range when the LCEs are heated, suggesting that the helical structure and pitch of the cholesteric phase can be stabilized with a polymer network.  相似文献   

12.
A series of new cholesteric liquid‐crystalline polysiloxanes ( P1 – P5 ) derived from menthyl groups were synthesized. The chemical structures of the monomers and polymers were characterized with Fourier transform infrared, 1H‐NMR, 13C‐NMR, and elemental analyses. The mesomorphic properties and thermal behavior were investigated with differential scanning calorimetry, polarizing optical microscopy, thermogravimetric analysis, and X‐ray diffraction measurements. The influence of the polymer structure on the thermal behavior was discussed. The monomer diosgeninyl 4‐allyloxybenzoate exhibited a typical cholesteric oily‐streak texture and a focal‐conic texture. Polymers P1 – P5 showed thermotropic liquid‐crystalline properties. P1 displayed a smectic fan‐shaped texture, P2 – P5 showed a cholesteric Grandjean texture, and P6 and P7 did not show mesomorphic properties. The experimental results demonstrated that the glass‐transition temperature and the clearing temperature decreased, and the mesomorphic properties weakened with an increasing concentration of menthyl units. Moreover, P1 – P5 exhibited wide mesophase temperature ranges and high thermal stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5559–5565, 2006  相似文献   

13.
The synthesis of chiral side‐chain liquid‐crystalline polysiloxanes containing both cholesteryl undecylenate (MI) and 4‐allyloxy‐benzoyl‐4‐(S‐2‐ethylhexanoyl) p‐benzenediol bisate (MII) mesogenic side groups was examined. The chemical structures of the obtained monomers and polymers were confirmed with Fourier transform infrared spectroscopy or 1H‐NMR techniques. The mesomorphic properties and phase behavior of the synthesized monomers and polymers were investigated with polarizing optical microscopy, differential scanning calorimetry, and thermogravimetric analysis (TGA). Copolymers IIP–IVP revealed a smectic‐A phase, and VP and VIP revealed a smectic‐A phase and a cholesteric phase. The experimental results demonstrated that the glass‐transition temperature, the clearing‐point temperature, and the mesomorphic temperature range of IIP–VIP increased with an increase in the concentration of mesogenic MI units. TGA showed that the temperatures at which 5% mass losses occurred were greater than 300°C for all the polymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2670–2676, 2002  相似文献   

14.
A series of side‐chain liquid crystalline oligomers (P1–P7) have been synthesized with cyclo(methylhydrogeno)siloxane and two cholesteric liquid crystalline monomers cholesteryl 4‐(10‐undecylen‐1‐yloxy)benzoate (M1) and cholesterol 4‐{6‐[(4‐(allyloxyl)‐benzoyl]‐hexanoxocarbonyl}‐benzoate (M2). The chemical structures and liquid crystalline properties of the synthesized oligomers were investigated using various experimental techniques such as FTIR, 1H‐NMR, DSC, POM, and XRD. All monomers and chiral oligomers show a cholesteric mesophase with very wide mesophase temperature ranges. They appear highly thermally stable with decomposition temperatures (Td) at 5% weight loss greater than 300°C. The optical properties of the oligmers have been characterized by reflection spectra and optical rotation analysis. All synthesized oligomers display colors at room temperature, and show reversible thermochromism within a wide temperature range (>120°C). The λmax values of the oligomers also nearly coincide during the first, second, and third heating cycles. The specific rotation of each oligomer is very sensitive to temperature, and the specific rotation value of P3 smoothly changes from ?21.7° to ?0.7° when it is heated. The optical properties of the oligomers offer tremendous potential for various optical applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1321‐1327, 2013  相似文献   

15.
A new mesogenic crosslinking agent M‐1 was synthesized to minimize the perturbations of a nonmesogenic crosslinking agent for liquid crystalline elastomers. The synthesis of new side‐chain liquid crystalline elastomers containing a rigid mesogenic crosslinking agent M‐1 and a nematic monomer M‐2 is described by a one‐step hydrosilylation reaction. The chemical structures of the obtained monomers and elastomers were confirmed by 1H NMR and FTIR spectroscopy. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the crosslinking units on the phase behavior is discussed. The elastomers containing less than 15 mol % of the crosslinking units showed elasticity, reversible phase transition, and nematic‐threaded texture. However, when the crosslinking density reached 21.6 mol %, the mesophase of polymer P‐8 disappears. The adoption of a mesogenic crosslinking agent diminishes the perturbation of a nonmesogenic crosslinking agent on mesophase of liquid crystalline elastomers, and isotropic temperature and a mesomorphic temperature range slightly decreased with increasing content of the crosslinking agent. In addition, X‐ray analysis shows nematic polydomain network polymers can transform into smectic monodomain by stress induction, leading to the orientation formation macroscopically. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1736–1742, 2004  相似文献   

16.
A series of new cholesteric liquid‐crystalline polysiloxanes derived from steroid substituents were synthesized. The chemical structures of the monomers or polymers obtained were characterized by FTIR, element analyses, 1H NMR, and 13C NMR. Their mesogenic properties and thermal stability were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. Monomers exhibited typical cholesteric focal‐conic or spiral texture. The polymers P 1? P 6 showed cholesteric phase and P 7 displayed smectic phase. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

17.
Several novel side‐chain liquid crystalline (LC) polysiloxanes bearing cholesteryl cinnamate mesogens and trifluoromethyl‐substituted mesogens were synthesized by a one‐step hydrosilylation reaction with poly(methylhydrogeno)siloxane, a cholesteric LC monomer cholesteryl 3‐(4‐allyloxy‐phenyl)‐acryloate and a fluoro‐containing LC monomer 4‐[2‐(3‐trifluoromethyl‐phenoxy)‐acetoxy]‐phenyl 4‐allyloxy‐benzoate. The chemical structures and LC properties of the monomers and polymers were characterized by use of various experimental techniques, such as FTIR, 1H‐NMR, 13C‐NMR, TGA, DSC, POM, and XRD. The temperatures at which 5% weight loss occurred were greater than 300°C for all the polymers, and the residue weight near 600°C increased slightly with increase of the trifluoromethyl‐substituted mesogens in the fluorinated polymer systems. The samples containing mainly cholesteryl cinnamate mesogens showed chiral nematic phase when they were heated and cooled, but the samples containing more trifluoromethyl‐substituted mesogens exhibited chiral smectic A mesophase. The glass transition temperature of the series of polymers increased slightly with increase of trifluoromethyl‐substituted mesogens in the polymer systems, but mesophase–isotropic phase transition temperature did not change greatly. In XRD curves, the intensity of sharp reflections at low angle increased with increase of trifluoromethyl‐substituted mesogens in the fluorinated polymers systems, indicating that the smectic order derived from trifluoromethyl‐substituted mesogens should be strengthened. These results should be due to the fluorophobic effect between trifluoromethyl‐substituted mesogens and the polymer matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Ethyl‐cyanoethyl cellulose [(E‐CE)C]/acrylic acid (AA) solution could form cholesteric networks when the AA was quickly photopolymerized. The cholesteric structure in the solution was changed during the polymerization but the variation of the cholesteric order could be depressed by crosslinking of the system. The dependence of λmax for the cholesteric phase on both the crosslinker concentration and the polymerization temperature was studied by UV‐Vis spectrometry. It was found that the cholesteric pitch variation is decreased with increasing the concentration of the crosslinking reagent and the water sensitivity of the cholesteric network is effectively suppressed and dependent on the types of crosslinker. The pitch of cholesteric network was decreased sharply with increasing the polymerization temperature, due to the increase of the volume shrinkage of the solvent during the polymerization. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1648–1653, 2005  相似文献   

19.
The synthesis of a new cholesteric monomer ( MLC) containing menthyl groups and a series of cholesteric elastomers ( LCE1−LCE4 ) is described. Their chemical structures and purity were characterized by FTIR, 1H-NMR, and elemental analyses. The phase behavior and thermal stability were investigated by differential scanning calorimetry, polarizing optical microscopy, X-ray diffraction, and thermogravimetric analysis. By inserting a flexible spacer between the mesogenic core and the terminal menthyl groups, mesomorphism of M LC was realized. LCE1−LCE4 with low content of crosslinking unit exhibited cholesteric phase because of the introduction of the nematic crosslinking unit. This indicates that low levels of chemical crosslinking do not significantly affect the phase behavior and mesomorphism of the elastomers, and reversible mesophase transitions can be observed. In addition, with increasing the content of crosslinking unit, the corresponding Tg decreased for LCE1−LCE4 , whereas their Ti did not remarkable change. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Europium‐containing cholesteric liquid crystalline polymers were graft copolymerized using poly(methylhydrogeno)siloxane, cholesteryl 4‐(allyloxy)benzoate (M1), cholesteryl acrylate (M2), and a europium complexes monomer (M3). The chemical structures of the monomers were characterized by Fourier transform infrared and 1H‐nuclear magnetic resonance. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, thermo gravimetric analysis, polarizing optical microscopy, and X‐ray diffraction. With an increase of europium complexes units in the polymers, the glass transition temperature (Tg) did not change significantly; the isotropic temperature (Ti) and mesophase temperature range (ΔT) decreased. All polymers showed typical cholesteric Grandjean textures, which was confirmed by X‐ray diffraction. The temperatures at which 5% weight loss occurred (Td) were greater than 300°C for the polymers. The introduction of europium complexes units did not change the liquid crystalline state of polymer systems; on the contrary, the polymers were enabled with the significant luminescent properties. With Eu3+ ion contents ranging between 0 and 1.5 mol %, luminescent intensity of polymers gradually increased and luminescent lifetimes were longer than 0.45 ms for the polymers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40866.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号