首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a design and testing of a new high‐speed electromagnetic driving mechanism for a high‐voltage vacuum circuit breaker (VCB). This mechanism is based on a high‐speed electromagnetic repulsion and a permanent magnet spring (PMS). This PMS is introduced instead of the conventional disk spring due to its low spring energy and more suitable force characteristics for VCB application. The PMS has been optimally designed by the 3D nonlinear finite‐elements magnetic field analysis and investigated its internal friction and eddy‐current effect. Furthermore, we calculated the dynamic of this mechanism coupling with the electromagnetic field and circuit analysis, in order to satisfy the operating characteristics—contact velocity, response time, and so on, required for the high‐speed VCB. A prototype VCB, which was built based on the above analysis, shows sufficient operating performance. Finally, the short circuit interruption tests were carried out with this prototype breaker, and we have been able to verify its satisfying performance. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 163(1): 34–40, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20398  相似文献   

2.
Sets of high‐order basis functions of a tetrahedral element are systematically constructed and applied to finite element analysis of eddy current problems. A polynomial space is divided into a lot of subspaces assigned on the edges, faces, and a volume of the tetrahedral element. Lagrange‐type vector basis functions of the subspaces are presented. The effect of the high‐order vector elements is investigated by a cubic conductor model located in AC steady‐state magnetic fields. In the calculations using the fundamental and second‐order elements, no convergent value of the eddy current power loss can be obtained in spite of fine meshes because the eddy current shifts to the surface of the conductor. The higher‐order vector elements give the convergent solutions in the coarse meshes. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 147(4): 60–67, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10306  相似文献   

3.
Using high‐temperature superconductors, a superconducting fault current limiter (SFCL) was fabricated and tested. The superconductor and a vacuum interrupter serving as a commutation switch were connected in parallel with a bypass coil. When a fault occurs and excessive current flows, the superconductor is first quenched and the current is transferred to the bypass coil because of the voltage drop of the superconductor. At the same time, since a magnetic field is generated by the current flowing in the bypass coil, the commutation switch is immediately driven by an electromagnetic repulsion plate connected to the driving rod of the vacuum interrupter (VI), and the superconductor is separated from this circuit. Using the test model, we were able to separate the superconductor from the circuit by the movement of the VI within a half current cycle and to transfer all current to the bypass coil. Since the operation of the commutation switch is included in the current limiting operation of this test model, it will be a useful circuit in the development of SFCL in the future. Moreover, since it can make the energy consumption of the superconductor small during the fault state due to the realization of a high‐speed switch with simple composition, the burden on the superconductor is reduced compared with the conventional resistive type of SFCL and it is considered that the flexibility of SFCL design is increased. Cooperation with a circuit breaker was also considered; trial calculations of the parameters and energy of operation were conducted and a discussion of the installation of the SFCL in an electric power system is presented. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 155(4): 20–29, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20265  相似文献   

4.
Nowadays, the goals of electrical supply utilities are to reduce equipment failures, extend service life, increase equipment reliability, and reduce their related operating and maintenance costs. The high‐voltage circuit breaker is an important element in the electrical network. In order to determine or to detect abnormal conditions inside a circuit breaker, powerful vibration analytical techniques have been proposed. In this paper, a vibrational analysis is carried out by analyzing the signal in the time–frequency domain under no‐load switching operations with a commercially available high‐voltage puffer‐type circuit breaker without opening its major parts. Vibration of the circuit breaker poles, operating mechanism, and various monitored parameters were recorded under normal and variable operating conditions. Moreover, a synthetic mechanical damage introduced deliberately is also investigated. The experimental result indicates that mechanical defects can be detected by analyzing the vibration signal. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

5.
An acousto‐optic laser deflector was used for visualization of high‐speed phenomena, such as shock waves and density perturbations accompanying an impulse discharge, or shock waves generated by laser‐induced breakdown in air. Using a continuous wave laser as the light source, shadowgraphs of shock waves and density perturbations were obtained at shutter speeds down to 1µs. Results showed that shock waves propagated at a speed of 417 m/s in the case of an impulse discharge, and 485 m/s in the case of laser‐induced breakdown. Prebreakdown phenomena such as leaders progressing from the high‐voltage electrode were also visualized. Compared to conventional high‐speed imaging techniques, this method is useful when using a laser light source, since the acousto‐optic crystal can accommodate high‐intensity laser light. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 154(3): 9–15, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20279  相似文献   

6.
This paper presents an optimum design approach for low‐speed, high‐torque permanent magnet motors. The approach is divided into two steps: the first consists of the rough estimation of torque by linear analysis, and the second the optimization of the motor configuration by nonlinear FEM analysis. Under restricted dimensional specifications and electrical requirements, a 16‐pole, 18‐coil permanent magnet motor with a rating of 600 Nm and 300 rpm was designed and constructed. © 2001 Scripta Technica, Electr Eng Jpn, 135(4): 52–63, 2001  相似文献   

7.
This paper presents design and analysis of low‐speed, high‐torque permanent magnet motors. The motor has 16‐pole, 18‐coil construction, and a unique winding arrangement to produce high torque. The simplified torque analysis is proposed considering the line of magnetic induction distribution in the motor. The validity of the proposed analysis has been proved by both linear and nonlinear FEM analyses. The 500‐Nm, 200‐rpm test motor has been designed and constructed and the motor shows the expected characteristics. © 2000 Scripta Technica, Electr Eng Jpn, 132(3): 48–56, 2000  相似文献   

8.
In this paper, a current control method for a high‐speed AC motor system is proposed. In high‐speed driving operation, the current controller tends to lose stability because of the dead time caused by computational delay and electromagnetic coupling included in the AC motor model. The main purpose of the proposed method is reduction of the dead time on the current controller. The proposed method is based on model predictive control and optimization of the start timing. The effectiveness of the proposed method is confirmed by simulation results. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 176(1): 37–45, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21083  相似文献   

9.
To evaluate the performance requirement of high‐voltage direct current (HVDC) breakers for modular multilevel converter (MMC)‐MTDC (multi‐terminal high voltage direct current) systems with high efficiency, the equivalent model for calculating the maximum short‐circuit current is presented in this paper. First, the short‐circuit current is decomposed into the steady‐state component and the fault component according to its physical dynamics. Second, the steady‐state component is determined by solving the direct current (DC) network; the fault component is calculated by an equivalent network in which the converters are replaced by a reactance, a resistance, and a capacitance in series. Then, the complete procedure for evaluating the performance requirement of HVDC breakers is described based on short‐circuit current calculation. Verifications have been carried out based on a three‐terminal 800 MW/±400 kV bipolar MMC‐MTDC system. The results show that the proposed methodology is efficient and effective. Lastly, based on the same system, the performance requirement of HVDC breakers and the influence by the sub‐module (SM) capacitance and the smoothing reactor have been studied with the proposed methodology. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

10.
An experimental investigation on short‐circuit phenomenon through ejected hot gas between source‐side terminals in molded case circuit breakers (MCCBs) was performed. The rate of occurrence of the short‐circuit phenomenon was found to increase with the peak value of the breaking current and with the order of the breaking test. The conductance of the ejected hot gas was also found to rise with the peak value of the breaking current and with the order of the breaking test. These results indicate that the hot gas of high conductance is the cause of the short‐circuit phenomenon. Some effective means were taken in the MCCB to reduce the conductance of the hot gas. Decreasing the conductance of the hot gas successfully prevented the occurrence of short‐circuit phenomenon. © 2000 Scripta Technica, Electr Eng Jpn, 132(1): 22–29, 2000  相似文献   

11.
An acousto‐optic laser deflector was used as a shutter for high‐speed imaging of laser interference fringes using an ordinary CCD camera. The exposure duration was set by the pulse width of the high‐frequency signal applied to the acousto‐optic deflector. Changes in laser interference fringes due to an impulse discharge in air were obtained at an exposure duration of 4 µs. By applying a sequence of high‐frequency signals with different frequency, the beam was deflected to four different angles at different times, allowing four interference images to be captured on a single video frame. This was used for time‐resolved imaging of the interference fringe pattern. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 148(2): 76–83, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20011  相似文献   

12.
This paper describes a gate drive circuit which is capable of driving an ultrahigh‐speed switching device and of suppressing high‐frequency noise caused by its high dV/dt ratio of 104 V/μs order. SiC (silicon carbide)‐based power semiconductor devices are very promising as next‐generation ultrahigh‐speed switching devices. However, one of their application problems is how to drive them with less high‐frequency noise without sacrificing their ultrahigh‐speed operation capability. The paper proposes a new gate drive circuit specialized for such devices, which charges and discharges the input capacitance of the device by using an impulse voltage generated by inductors. This ultrahigh‐speed switching operation causes a high‐frequency common‐mode noise current in the gate drive circuit, which penetrates an isolated power‐supply transformer due to the parasitic capacitance between the primary and the secondary windings. In order to overcome this secondary problem, a toroidal multicore transformer is also proposed in the paper in order to reduce the parasitic capacitance drastically. By applying the former technique, the turn‐on time and turn‐off time of the power device were shortened by 50% and by 20%, compared with a conventional push‐pull gate drive circuit, respectively. In addition, the latter technique allows reduction of the peak common‐mode noise current to 25%, compared with the use of a conventional standard utility power‐supply transformer. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 176(4): 52–60, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21124  相似文献   

13.
A Fabry–Perot (FP) interferometer‐based ultrasound sensor provides an inherently broadband response and excellent detection sensitivity compared to piezoelectric zirconate titanate (PZT) or polyvinylidene difluoride (PVDF) transducers. It is therefore expected to be used for medical ultrasound imaging and photoacoustic imaging. However, at present, mapping acoustic fields takes much time for scanning, which hinders real‐time measurement. We propose a new approach that utilizes a high‐speed camera (HSC) to map acoustic fields without mechanical scanning and to sample signals of acoustic waves with the shutter of the HSC. Experimental results indicate that acoustic field at the focus of a pulsed 1‐MHz PZT ultrasound transducer can be detected and mapped by using the FP sensor with the HSC. By improving the uniformity of the FP sensor and the exposure time, the frame rate of HSC can be further developed, and this approach should be able to provide a fast acoustic field mapping for high‐resolution biomedical photoacoustic and other ultrasonic imaging. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

14.
The trend in high‐speed digital circuits is to increase speed and density and to operate at lower voltage. This fast increase in the switching speed combined with the decrease of the operating voltage causes the allowable absolute voltage variations to decrease, which makes the PDS design a more challenging task than ever. Moreover, the complex 3D nature of the modern PDS causes it to be more sensitive to capacitors' placement as well as capacitance value. In this paper, we introduce an efficient complete solution for the design of high‐speed digital PDS. This solution (a) takes the effects of the decoupling capacitor placement into consideration through a 3D electromagnetic simulation of the PDS, (b) defines a more‐realistic PDS design target, and (c) presents a clear capacitor value selection methodology. Finally, we applied our methodology to an industrial test case, compared its results with that of industrial design, and showed its advantages. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A new vector control system for permanent magnet synchronous motor drives has been developed. To stabilize the current control loop in the high‐rotating‐speed region, a novel configuration of current controller is introduced. The unique characteristic of the proposed current controller is that the current regulator is connected to the conventional motor model in a series. By analyzing the transfer characteristics of the control, it became clear that the influence of the coupling component between the dq axes can be deleted theoretically if the control parameters are set properly. The stability and torque response of the proposed vector control system were improved, and the effectiveness of the proposed controller was demonstrated by a time domain simulation and some experiments. In addition, the robustness of the controlling system was investigated experimentally. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 176(4): 61–72, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21123  相似文献   

17.
This paper proposes a new sensorless vector control method for salient‐pole permanent‐magnet synchronous motors. In regard to rotor phase estimation, the sensorless vector control method is characterized by a new high‐frequency voltage injection method distinguished from the conventional ones by a unique ellipse shape of the spatial rotation, and by a new PLL method whose input is a high‐frequency current autocorrelated signal. The new vector control method established by two innovative technologies can have the following high‐performance and attractive features: (1) it can allow 250% rated torque at standstill; (2) it can operate from zero to the rated speed under the rated motoring or regenerating load; (3) it accepts instant injection of the rated load even for zero‐speed control; (4) it accommodates a load with huge moment of inertia; (5) phase estimation is very robust against inverter dead time; (6) the computational load for estimating rotor phase is very small, would be the smallest among the methods with comparable performance. This paper presents the new vector control method by focusing on two innovative technologies from its principles to design rules. Usefulness of the new vector control method is verified through extensive experiments. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 164(4): 62–77, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20632  相似文献   

18.
Sudden three‐phase short‐circuit current of a turbine generator was calculated by a three‐dimensional magnetic field analysis. That analysis takes into account the rotation, magnetic saturation, and eddy current at a rotor part. To compare test results and calculated results, a method was proposed for short‐circuit phase estimation at sudden three‐phase short‐circuit test by line voltage waveform of the test results. The calculated results of short‐circuit current waveform are in good agreement with the test results. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 153(1): 54–62, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20110  相似文献   

19.
A method to measure a small capacitance with its loss resistance using a set of transient current waveforms is proposed in this paper. The parameters are obtained from the time constants in the time domain. The method has high resistance to extraneous noise, because a time‐to‐frequency transformation, which is sensitive to noise, is not required. The transient current waveforms are obtained by a voltage or current source, a current transformer, and a waveform recorder. The measured capacitance by the proposed method is not affected by the capacitance of the voltage probe, because it is obtained without any voltage information. The sheath surge impedance of the current injection cable, which is indispensable for the transient measurement, is corrected. The application of the method has the advantage in that it allows the modeling of a fast transient of a power apparatus, comparing it with the steady‐state measurement using an impedance measuring instrument. The proposed method is applied to create an equivalent circuit between electrodes implanted into a piece of wood, and its reliability is confirmed by comparison between the measured and calculated results. Stray capacitances of a miniature circuit breaker are also measured, and the results show that the proposed method is applicable to equipment in power systems. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

20.
This paper presents a finite element time domain model for a numerical solution of a coupled non‐uniform transmission line problem. On the basis of the finite element method, a novel numerical procedure for the solution of a system of the non‐uniform multi‐conductor transmission line equations in the time domain is presented. The results obtained by the proposed method have been compared with the solution obtained using the finite difference time domain method, and an excellent correlation has been demonstrated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号