首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

2.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Poly(l ‐lactic acid) (PLLA) was blended with a series of four‐armed poly(? ‐caprolactone)‐block ‐poly(d ‐lactic acid) (4a‐PCL‐b ‐PDLA) copolymers in order to improve its crystallization rate and mechanical properties. It is found that a higher content of 4a‐PCL‐b ‐PDLA copolymer or longer PDLA block in the copolymer lead to faster crystallization of the blend, which is attributed to the formation of stereocomplex crystallites between PLLA matrix and PDLA blocks of the 4a‐PCL‐b ‐PDLA copolymers. Meanwhile, the PDLA block can improve the miscibility between flexible PCL phase and PLLA phase, which is beneficial for improving mechanical properties. The tensile results indicate that the 10% 4a‐PCL5kb ‐PDLA5k/PLLA blend has the largest elongation at break of about 72% because of the synergistic effects of stereocomplexation between enantiomeric PLAs, multi‐arm structure and plasticization of PCL blocks. It is concluded that well‐controlled composition and content of 4a‐PCL‐b ‐PDLA copolymer in PLLA blends can significantly improve the crystallization rate and mechanical properties of the PLLA matrix. © 2017 Society of Chemical Industry  相似文献   

4.
Compared with linear diblock or triblock poly(ethylene glycol)‐block‐poly(L ‐lactic acid) copolymer (PEG‐b‐PLLA), star‐shaped PEG‐b‐PLLA (sPEG‐b‐PLLA) copolymers exhibit smaller hydrodynamic radius and lower viscosity and are expected to display peculiar morphologies, thermal properties, and degradation profiles. Compared with the synthesis routine of PEG‐b‐PLLA form lactide and PEG, the traditional synthesis routine from LA and PEG were suffered by the low reaction efficiency, low purity, lower molecular weight, and wide molecular weight distribution. In this article, multiarm sPEG‐b‐PLLA copolymer was prepared from multiarm sPEG and L ‐lactic acid (LLA using an improved method of melt polycondensation, in which two types of sPEG, that is, sPEG1 (four arm, Mn = 4300) and sPEG2 (three arm, Mn = 3200) were chosen as the core. It was found the molecular weight of sPEG‐b‐PLLA could be strongly affected by the purity of LLA and sPEGs, and the purification technology of vacuum dewater and vacuum distillation could help to remove most of the impurities in commercial available LLA. The polymers, including sPEG and sPEG‐b‐PLLA with varied core (sPEG1 and sPEG2) and LLA/sPEG feeding ratios, were characterized and confirmed by 1H‐NMR and 13C‐NMR spectroscopy, Fourier transform infrared spectroscopy (FT‐IR) and gel permeation chromatography, which showed that the terminal hydroxyl group in each arm of sPEGs had reacted with LLA to form sPEG‐b‐PLLA copolymers with fairly narrow molecular weight distribution. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Optically active poly(L ‐phenyllactic acid) (Ph‐PLLA), poly(L ‐lactic acid) (PLLA), and poly(L ‐phenyllactic acid‐co‐L ‐lactic acid) with weight‐average molecular weight exceeding 6 × 103 g mol?1 were successfully synthesized by acid catalyzed direct polycondensation of L ‐phenyllactic acid and/or L ‐lactic acid in the presence of 2.5–10 wt % of p‐toluenesulfonic acid. Their physical properties and crystallization behavior were investigated by differential scanning calorimetry, thermogravimetry, and polarimetry. The absolute value of specific optical rotation ([α]) for Ph‐PLLA (?38 deg dm?1 g?1 cm3) was much lower than that of [α] for PLLA (?150 deg dm?1 g?1 cm3), suggesting that the helical nature was reduced by incorporation of bulky phenyl group. PLLA was crystallizable during solvent evaporation, heating from room temperature, and cooling from the melt. Incorporation of a very low content of bulky phenyllactyl units even at 4 mol % suppressed the crystallization of L ‐lactyl unit sequences during heating and cooling, though the copolymers were crystallizable for L ‐phenylactyl units up to 6 mol % during solvent evaporation. The activation energy of thermal degradation (ΔEtd) for Ph‐PLLA (200 kJ mol?1) was higher than that for PLLA (158 kJ mol?1). The ΔEtd for the copolymers increased with an increase in L ‐phenyllactyl unit content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The effect of poly(D ,L ‐lactide‐copara‐dioxanone) (PLADO) as the compatibilizer on the properties of the blend of poly(para‐dioxanone) (PPDO) and poly(D ,L ‐lactide) (PDLLA) has been investigated. The 80/20 PPDO/PDLLA blends containing from 1% to 10% of random copolymer PLADO were prepared by solution coprecipitation. The PLADO component played a very important role in determining morphology, thermal, mechanical, and hydrophilic properties of the blends. Addition of PLADO into the blends could enhance the compatibility between dispersed PDLLA phase and PPDO matrix; the boundary between the two phases became unclear and even the smallest holes were not detected. On the other hand, the position of the Tg was composition dependent; when 5% PLADO was added into blend, the Tg distance between PPDO and PDLLA was shortened. The blends with various contents of compatibilizer had better mechanical properties compared with simple PPDO/PDLLA binary polymer blend, and such characteristics further improved as adding 5% random copolymers. The maximum observed tensile strength was 29.05 MPa for the compatibilized PPDO/PDLLA blend with 5% PLADO, whereas tensile strength of the uncompatibilized PPDO/PDLLA blend was 14.03 MPa, which was the lowest tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Poly(L ‐lactic acid) (PLLA), poly(ε‐caprolactone) (PCL), and their films without or blended with 50 wt% poly(ethylene glycol) (PEG) were prepared by solution casting. Porous films were obtained by water‐extraction of PEG from solution‐cast phase‐separated PLLA‐blend‐PCL‐blend‐PEG films. The effects of PLLA/PCL ratio on the morphology of the porous films and the effects of PLLA/PCL ratio and pores on the physical properties and biodegradability of the films were investigated. The pore size of the blend films decreased with increasing PLLA/PCL ratio. Polymer blending and pore formation gave biodegradable PLLA‐blend‐PCL materials with a wide variety of tensile properties with Young's modulus in the range of 0.07–1.4 GPa and elongation at break in the range 3–380%. Pore formation markedly increased the PLLA crystallinity of porous films, except for low PLLA/PCL ratio. Polymer blending as well as pore formation enhanced the enzymatic degradation of biodegradable polyester blends. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
Poly(N‐isopropylacrylamide‐co‐hydroxyethyl methacrylate) [P(NIPAM‐co‐HEMA)] copolymer was synthesized by controlled radical polymerization from respective N‐isopropylacrylamide (NIPAM) and hydroxyethyl methacrylate (HEMA) monomers with a predetermined ratio. To prepare the thermosensitive and biodegradable nanoparticles, new thermosensitive graft copolymer, poly(L ‐lactide)‐graft‐poly(N‐isoporylacrylamide‐co‐hydroxyethyl methacrylate) [PLLA‐g‐P(NIPAM‐co‐HEMA)], with the lower critical solution temperature (LCST) near the normal body temperature, was synthesized by ring opening polymerization of L ‐lactide in the presence of P(NIPAM‐co‐HEMA). The amphiphilic property of the graft copolymers was formed by the grafting of the PLLA hydrophobic chains onto the PNIPAM based hydrophilic backbone. Therefore, the graft copolymers can self‐assemble into uniformly spherical micelles ò about 150–240 nm in diameter as observed by the field emission scanning electron microscope and dynamic light scattering. Dexamethasone can be loaded into these nanostructures during dialysis with a relative high loading capacity and its in vitro release depends on temperature. Above the LCST, most of the drugs were released from the drug‐loaded micelles, whereas a large amount of drugs still remains in the micelles after 48 h below the LCST. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Blend films of poly(L ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA) were obtained by evaporation of hexafluoroisopropanol solutions of both components. The component interaction, crystallization behavior, and miscibility of these blends were studied by solid‐state NMR and other conventional methods, such as Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction (WAXD). The existence of two series of isolated and constant glass‐transition temperatures (Tg's) independent of the blend composition indicates that PLLA and PVA are immiscible in the amorphous region. However, the DSC data still demonstrates that some degree of compatibility related to blend composition exists in both PLLA/atactic‐PVA (a‐PVA) and PLLA/syndiotactic‐PVA (s‐PVA) blend systems. Furthermore, the formation of interpolymer hydrogen bonding in the amorphous region, which is regarded as the driving force leading to some degree of component compatibility in these immiscible systems, is confirmed by FTIR and further analyzed by 13C solid‐state NMR analyses, especially for the blends with low PLLA contents. Although the crystallization kinetics of one component (especially PVA) were affected by another component, WAXD measurement shows that these blends still possess two isolated crystalline PLLA and PVA phases other than the so‐called cocrystalline phase. 13C solid‐state NMR analysis excludes the interpolymer hydrogen bonding in the crystalline region. The mechanical properties (tensile strength and elongation at break) of blend films are consistent with the immiscible but somewhat compatible nature of these blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 762–772, 2001  相似文献   

10.
Poly(ethylene glycol)‐poly(L ‐lactide) diblock and triblock copolymers were prepared by ring‐opening polymerization of L ‐lactide with poly(ethylene glycol) methyl ether or with poly(ethylene glycol) in the presence of stannous octoate. Molecular weight, thermal properties, and crystalline structure of block copolymers were analyzed by 1H‐NMR, FTIR, GPC, DSC, and wide‐angle X‐ray diffraction (WAXD). The composition of the block copolymer was found to be comparable to those of the reactants. Each block of the PEG–PLLA copolymer was phase separated at room temperature, as determined by DSC and WAXD. For the asymmetric block copolymers, the crystallization of one block influenced much the crystalline structure of the other block that was chemically connected to it. Time‐resolved WAXD analyses also showed the crystallization of the PLLA block became retarded due to the presence of the PEG block. According to the biodegradability test using the activated sludge, PEG–PLLA block copolymer degraded much faster than PLLA homopolymers of the same molecular weight. © 1999 John Wiley amp; Sons, Inc. J Appl Polym Sci 72: 341–348, 1999  相似文献   

11.
Poly(ω‐pentadecalactone) (PPDL) was synthesized by enzyme‐catalyzed polymerization. The molecular weight of the PPDL was about 35,000. Opaque poly(L ‐lactic acid) (PLLA)/PPDL blend films were created by the solvent casting technique. The addition of PPDL led to PLLA crystallization. Furthermore, the addition of PPDL with PLLA increased both the Young's modulus [pure PLLA : 0.67 GPa, PLLA/PPDL (70/30 wt %) : 1.01 GPa] and the PLLA glass transition temperature. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

13.
Reaction after mixing of liquid epoxidized natural rubber/poly(L ‐lactide) blend was performed to enhance the compatibility of the blend. The liquid epoxidized natural rubber was prepared by epoxidation of deproteinized natural rubber with peracetic acid in latex stage followed by depolymerization with peroxide and propanal. The resulting liquid deproteinized natural rubber having epoxy group (LEDPNR) was mixed with poly(L ‐lactide) (PLLA) to investigate the compatibility of the blend through differential scanning calorimetry, optical light microscopy, and NMR spectroscopy. After heating the blend at 473 K for 20 min, glass transition temperature (Tg) of LEDPNR in LEDPNR/PLLA blend increased from 251 to 259 K, while Tg and melting temperature (Tm) of PLLA decreased from 337 to 332 K and 450 to 445 K, respectively, suggesting that the compatibility of LEDPNR/ PLLA blend was enhanced by a reaction between the epoxy group of LEDPNR and the ester group of PLLA. The reaction was proved by high‐resolution solid‐state 13C NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Ethylene‐methyl acrylate‐glycidyl methacrylate copolymer (E‐MA‐GMA) is employed to improve the impact toughness of poly(l ‐lactic acid) (PLLA)/thermoplastic polyurethane (TPU) blends by reactive melt‐blending. The reaction and miscibility between the components are confirmed by Fourier transform infrared spectroscopy, dynamic mechanical analysis, and differential scanning calorimetry. A super‐tough PLLA/TPU/E‐MA‐GMA multiphase blend (75/10/15) exhibits a significantly improved impact strength of 77.77 kJ m?2, which is more than 17 times higher than that of PLLA/TPU (90/10) blend. A co‐continuous‐like TPU phase structure involving E‐MA‐GMA phase at the etched cryo‐fractured surface and the high‐orientated matrix deformation at the impact‐fractured surface are observed by scanning electron microscopy. The high‐orientated matrix deformation induced by the co‐continuous TPU phase structure is responsible for the super toughness of PLLA/TPU/E‐MA‐GMA blends.  相似文献   

15.
Blends of two semicrystalline polymers, poly(L ‐lactic acid) (PLLA) and poly‐p‐dioxanone (PPD) have been prepared by solvent casting in different compositions. Thermal, morphological, and mechanical properties of the blends were studied using modulated differential scanning calorimetry, wide‐angle X‐ray diffractometry, scanning electron microscopy (SEM), polarizing light microscopy (PLM), and tensile tests. Thermal analysis showed two glass transition temperatures nearly constant and equal to the values of the homopolymers and constant values of melting temperature (Tm) for all blend compositions, suggesting that both polymers are immiscible. The PLM and SEM observations validated these results, and showed the different morphology obtained by changing the composition of the blend. The blends 40/60, 50/50, and 60/40 presented a clearly macroseparated system, while the 20/80 and 80/20 blends presented better homogeneity, probably due to the low amount of one component in the other. It was found by PLM that PPD is able to crystallize according to a spherulitic morphology when its content is above 40%. Under this content, the crystallization of PPD is hardly observed. The blend 20/80 is more flexible, and tough material and neck formation during elongation is also observed, due to PPD, which may act as a plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2744–2755, 2003  相似文献   

16.
Well‐defined poly(l ‐lactide‐b‐ethylene brassylate‐b‐l ‐lactide) (PLLA‐b‐PEB‐b‐PLLA) triblock copolymer was synthesized by using double hydroxyl‐terminated PEBs with different molecular weights. Gel permeation chromatography and NMR characterization were employed to confirm the structure and composition of the triblock copolymers. DSC, wide‐angle X‐ray diffraction, TGA and polarized optical microscopy were also employed to demonstrate the relationship between the composition and properties. According to the DSC curves, the cold crystallization peak vanished gradually with decrease of the PLLA block, illustrating that the relatively smaller content of PLLA may lead to the formation of a deficient PLLA type crystal, leading to a decrease of melting enthalpy and melting temperature. Multi‐step thermal decompositions were determined by TGA, and the PEB unit exhibited much better thermal stability than the PLLA unit. Polarized optical microscopy images of all the triblock samples showed that spherulites which develop radially and with an extinction pattern in the form of a Maltese cross exhibit no ring bond. The growth rate of the spherulites of all triblock samples was investigated. The crystallization capacity of PLLA improved with incorporation of PLLA, which accords with the DSC and wide‐angle X‐ray diffraction results. © 2019 Society of Chemical Industry  相似文献   

17.
The poly(ε‐caprolactone) (PCL)/starch blends were prepared with a coextruder by using the starch grafted PLLA copolymer (St‐g‐PLLA) as compatibilizers. The thermal, mechanical, thermo‐mechanical, and morphological characterizations were performed to show the better performance of these blends compared with the virgin PCL/starch blend without the compatibilizer. Interfacial adhesion between PCL matrix and starch dispersion phases dominated by the compatibilizing effects of the St‐g‐PLLA copolymers was significantly improved. Mechanical and other physical properties were correlated with the compatibilizing effect of the St‐g‐PLLA copolymer. With the addition of starch acted as rigid filler, the Young's modulus of the PCL/starch blends with or without compatibilizer all increased, and the strength and elongation were decreased compared with pure PCL. Whereas when St‐g‐PLLA added into the blend, starch and PCL, the properties of the blends were improved markedly. The 50/50 composite of PCL/starch compatibilized by 10% St‐g‐PLLA gave a tensile strength of 16.6 MPa and Young's modulus of 996 MPa, respectively, vs. 8.0 MPa and 597 MPa, respectively, for the simple 50/50 blend of PCL/starch. At the same time, the storage modulus of compatibilized blends improved to 2940 MPa. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
To modify the mechanical properties of a poly(l ‐lactide) (PLLA)/poly(para‐dioxanone) (PPDO) 85/15 blend, poly(para‐dioxanone‐co‐l ‐lactide) (PDOLLA) was used as a compatibilizer. The 85/15 PLLA/PPDO blends containing 1–5 wt % of the random copolymer PDOLLA were prepared by solution coprecipitation. Then, the thermal, morphological, and mechanical properties of the blends with different contents of PDOLLA were studied via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and tensile testing, respectively. The DSC result revealed that the addition of PDOLLA into the blends only slightly changed the thermal properties by inhibiting the crystallization degree of the poly(l ‐lactide) in the polymer blends. The SEM photos indicated that the addition of 3 wt % PDOLLA into the blend was ideal for making the interface between the PLLA and PPDO phases unclear. The tensile testing result demonstrated that the mechanical properties of the blends containing 3 wt % PDOLLA were much improved with a tensile strength of 48 MPa and a breaking elongation of 214%. Therefore, we concluded that the morphological and mechanical properties of the PLLA/PPDO 85/15 blends could be tailored by the addition of the PDOLLA as a compatibilizer and that the blend containing a proper content of PDOLLA had the potential to be used as a medical implant material. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41323.  相似文献   

19.
Porous poly(L ‐lactide) (PLLA) films were prepared by water extraction of poly(ethylene oxide) (PEO) from solution‐cast PLLA and PEO blend films. The dependence of blend ratio and molecular weight of PEO on the porosity and pore size of films was investigated by gravimetry and scanning electron microscopy. The film porosity and extracted weight ratio were in good agreement with the expected for porous films prepared using PEO of low molecular weight (Mw = 1 × 103), but shifted to lower values than expected when high molecular weight PEO (Mw = 1 × 105) was utilized. The maximum pore size was larger for porous films prepared from PEO having higher molecular weight, when compared at the same blending ratio of PLLA and PEO before water extraction. Differential scanning calorimetry of as‐cast PLLA and PEO blend films revealed that PLLA and PEO were phase‐separated at least after solvent evaporation. On the other hand, comparison of blend films before and after extraction suggested that a small amount of PEO was trapped in the amorphous region between PLLA crystallites even after water extraction and hindered PLLA crystallization during solvent evaporation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 629–637, 2000  相似文献   

20.
Poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) with very different weight‐average molecular weights (Mw) of 4.0 × 103 and 7.0 × 105 g mol?1 (Mw(PDLA)/Mw(PLLA) = 175) were blended at different PDLA weight ratios (XD = PDLA weight/blend weight) and their crystallization from the melt was investigated. The presence of low molecular weight PLLA facilitated the stereocomplexation and thereby lowered the cold crystallization temperature (Tcc) for non‐isothermal crystallization during heating and elevated the radial growth rate of spherulites (G) for isothermal crystallization, irrespective of XD. The orientation of lamellae in the spherulites was higher for the neat PLLA, PDLA and an equimolar blend than for the non‐equimolar blends. It was found that the orientation of lamellae in the blends was maintained by the stereocomplex (SC) crystallites. Although the G values are expected to decrease with an increase in XD or the content of high‐molecular‐weight PDLA with lower chain mobility compared with that of low‐molecular‐weight PLLA, G was highest at XD = 0.5 where the maximum amount of SC crystallites was formed and the G values were very similar for XD = 0.4 and XD = 0.6 with the same enantiomeric excess. This means that the effect of SC crystallites overwhelmed that of chain mobility. The nucleating mechanisms of SC crystallites were identical for XD = 0.1–0.5 in the Tc range 130–180 °C. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号