首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“Immittance converter” is short for “impedance–admittance converter.” The immittance converter has an input impedance that is proportional to the admittance of the load connected across output terminals. In this converter, the output current is proportional to the input voltage and the input current is proportional to the output voltage. Consequently, it converts a constant voltage source into a constant current source and a constant current source into a constant voltage source. It is well known that the quarter‐wavelength transmission line shows immittance conversion characteristics. However, it has very long line length for the switching frequency, and is not suitable for power electronics application. Thus, we proposed immittance converters that consist of lumped elements L, C and show improved immittance conversion characteristics at a resonant frequency. In this paper, we propose a T‐LCLC‐type immittance converter, which has the transitive configuration and both advantages of T‐LCL‐ and π‐CLC‐type immittance converters. We show voltage–current transformation characteristics and frequency characteristics and efficiency characteristics of the T‐LCLC immittance converter. These characteristics were determined analytically and experimentally. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 142(3): 57–63, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10095  相似文献   

2.
The immittance converter has an input impedance that is proportional to the admittance of a load connected across its output terminals. In this converter, the output current is proportional to the input voltage and the input current is proportional to the output voltage. Consequently, a constant‐voltage source is converted into a constant‐current source and a constant‐current source into a constant‐voltage source. The immittance converters consisting of only passive elements (inductors L and capacitors C) are suitable for use in the high‐frequency links in power electronics applications. Previously, we proposed several types of immittance converters and some applications to power electronics equipment. In this paper, we propose a new three‐phase immittance converter consisting of three L and C elements each to obtain an alternating current source from a three‐phase voltage source without control. This paper presents a configuration of the new three‐phase immittance converter that operates in either anti‐phase or in‐phase modes between the input voltage and the output voltage, and its voltage–current conversion characteristics and efficiency characteristics. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 145(1): 52– 58, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10169  相似文献   

3.
The immittance converter has an input impedance that is proportional to the admittance of a load connected across output terminals. Therefore, in this converter, the output current is proportional to the input voltage and the input current is proportional to the output voltage. Consequently, it converts a constant‐voltage source into a constant‐current source and a constant‐current source into a constant‐voltage source. It is well know that the quarter‐wavelength transmission line shows immittance conversion characteristics. However, it has a very long line length for the switching frequency of converters and is not suitable for power electronics application. Thus, we proposed five types of immittance converters that consist of lumped elements L and C and showed improved immittance conversion characteristics at a resonant frequency. The output characteristics and efficiency characteristics of an immittance converter are the most important parameter when it is used in practical applications in a high‐frequency link. In this paper, we show voltage–current transformation characteristics, current–voltage transformation characteristics, and efficiency characteristics of a hybrid‐type immittance converter which consist of L and C elements with losses. The excellent characteristics were confirmed analytically and experimentally. © 2001 Scripta Technica, Electr Eng Jpn, 138(3): 80–86, 2002  相似文献   

4.
5.
An immittance converter has fine performance in many power electronics applications. Its function is to convert voltage sources into current sources and current sources into voltage sources. The immittance converter has an input impedance that is proportional to the admittance of loads connected across output terminals. Therefore, in this converter, the output current is proportional to the input voltage and the input current is proportional to the output voltage. Consequently, it converts a constant voltage source into a constant current source and a constant current source into a constant voltage source. When an immittance converter operates at a resonant frequency and is inserted to high-frequency link systems, voltage source outputs turn into current source outputs and current source outputs turn into voltage source outputs. Some power electronics applications of this converter are photovoltaic inverters and dc-dc converters with constant current outputs. It is well known that a quarter-wavelength transmission line shows immittance conversion characteristics. However, it has a very long line length for its switching frequency (e.g., 20 kHz), and is not suitable for power electronics applications. Therefore we propose five immittance converters that consist of lumped L and C elements and show the immittance conversion characteristics at a resonant frequency. These immittance converters are much smaller and lighter than the transmission line. Their principles, basic circuits, and basic characteristics are described in this paper. We also evaluate their application to high-frequency link systems of power electronics. © 1998 Scripta Technica, Electr Eng Jpn, 124(2): 53–62, 1998  相似文献   

6.
Current mirror is one of the basic building blocks of analog VLSI systems. For high‐performance analog circuit applications, the accuracy and bandwidth are the most important parameters to determine the performance of the current mirror. This paper presents an efficient implementation of a CMOS current mirror suitable for low‐voltage applications. This circuit combines a shunt input feedback, a regulated cascade output and a differential amplifier to achieve low input resistance, high accuracy and high output resistance. A comparison of several architectures of this scheme based on different architectures of the amplifier is presented. The comparison includes: input impedance, output impedance, accuracy, frequency response and settling time response. These circuits are validated with simulation in 0.18µm CMOS TSMC of MOSIS. In this paper, a linear voltage to current converter, based on the adapted current mirror, is proposed. Its static and dynamic behaviour is presented and validated with the same technology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A non‐isolated dual half‐bridge large step‐down voltage conversion ratio converter with non‐pulsating output current, utilizing one coupled inductor, one energy‐transferring capacitor, and one output inductor, is presented herein. The coupled inductor is connected between the input voltage and the output inductor and plays a role to step down the input voltage. Furthermore, the output inductor is used not only to further step down the voltage but also to provide a non‐pulsating output current. Moreover, the proposed converter can achieve zero‐voltage switching. In this study, detailed theoretical deductions and some experimental results of a prototype with 48 V input voltage, 3.3 V output voltage, and 10 A output current are provided to demonstrate the feasibility and effectiveness of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper a mixed‐mode (input and output signals can be current or voltage) Kerwin–Huelsman–Newcomb (KHN) biquad with low/high input impedance and high/low output impedance depending on the type of the corresponding signal (current/voltage) is presented. The circuit is constructed using three differential voltage current conveyors (DVCCs), two grounded capacitors and three grounded resistors. The circuit simultaneously provides bandpass (BP), highpass (HP) and lowpass (LP) responses when the output is current and notch, BP and LP responses when the output is voltage. The notch and allpass responses can be obtained by connecting appropriate output currents directly without using additional active elements. Because of the low input and high output impedance of the circuit for current signals and the high input and low output impedance for voltage signals, it can be used in cascade for realizing higher‐order filters. SPICE simulation results are given to verify the theoretical analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a high resolution time‐to‐digital converter (TDC) for low‐area applications. To achieve both high resolution and low circuit area, we propose a dual‐slope voltage‐domain TDC, which is composed of a time‐to‐voltage converter (TVC) and an analog‐to‐digital converter (ADC). In the TVC, a current source and a capacitor are used to make the circuit as simple as possible. For the same reason, a single‐slope ADC, which is commonly used for compact area ADC applications, is adapted and optimized. Because the main non‐linearity occurs in the current source of the TVC and the ramp generator of the ADC, a double gain‐boosting current source is applied to overcome the low output impedance of the current source in the sub‐100‐nm CMOS process. The prototype TDC is implemented using a 65‐nm CMOS process, and occupies only 0.008 mm2. The measurement result shows a dynamic range with an 8‐bit 8.86‐ps resolution and an integrated non‐linearity of ±1.25 LSB. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes a novel three‐phase converter using a three‐phase series chopper. The proposed circuit is composed of three switching devices, three‐phase diode bridge, input reactors, and LC low‐pass filter. In the conventional circuit, which combines three‐phase diode bridge and boost voltage chopper, to obtain sinusoidal input current the output voltage must be two or three times larger than the maximum input line voltage. However, in the proposed circuit, the input current can be controlled to be sinusoidal also when the output voltage is the same as the maximum input line voltage. This can be achieved because in the proposed circuit the discharging current of the reactors does not flow through the voltage source. The control method of the proposed circuit is as simple as that of the conventional circuit since all three switching devices are simultaneously turned on and off. This paper discusses the theoretical analysis and the design of the proposed circuit. In addition, simulation and experimental results are reported. The proposed circuit has obtained a 93% efficiency, and 99.7% at 1.3kW load as the input power factor. © 2000 Scripta Technica, Electr Eng Jpn, 132(4): 79–88, 2000  相似文献   

11.
A new type of three‐phase quasi‐Z‐source indirect matrix converter (QZS‐IMC) is proposed in this paper. It uses a unique impedance network for achieving voltage‐boost capability and making the input current in continuous conduction mode (CCM) to eliminate the input filter. The complete modulation strategy is proposed to operate the QZS‐IMC. Meanwhile, a closed‐loop DC‐link peak voltage control strategy is proposed, and the DC‐link peak voltage is estimated by measuring both the input and capacitor voltages. With this proposed technique, a high‐performance output voltage control can be achieved with an excellent transient performance even if there are input voltage and load current variations. The controller is designed by using the small‐signal model. Vector control scheme of the induction motor is combined with the QZS‐IMC to achieve the motor drive. A QZS‐IMC prototype is built in laboratory, and experimental results verify the operating principle and theoretical analysis of the proposed converter. The simulation tests of QZS‐IMC based inductor motor drive are carried out to validate the proposed converter's application in motor drive. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a single lossless inductive snubber‐assisted ZCS‐PFM series resonant DC‐DC power converter with a high‐frequency high‐voltage transformer link for industrial‐use high‐power magnetron drive. The current flowing through the active power switches rises gradually at a turned‐on transient state with the aid of a single lossless snubber inductor, and ZCS turn‐on commutation based on overlapping current can be achieved via the wide range pulse frequency modulation control scheme. The high‐frequency high‐voltage transformer primary side resonant current always becomes continuous operation mode, by electromagnetic loose coupling design of the high‐frequency high‐voltage transformer and the magnetizing inductance of the high‐frequency high‐voltage transformer. As a result, this high‐voltage power converter circuit for the magnetron can achieve a complete zero current soft switching under the condition of broad width gate voltage signals. Furthermore, this high‐voltage DC‐DC power converter circuit can regulate the output power from zero to full over audible frequency range via the two resonant frequency circuit design. Its operating performances are evaluated and discussed on the basis of the power loss analysis simulation and the experimental results from a practical point of view. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 153(3): 79–87, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20126  相似文献   

13.
This paper presents a new single‐stage single‐switch high power factor correction AC/DC converter suitable for low‐power applications (< 150 W) with a universal input voltage range (90–265 Vrms). The proposed topology integrates a buck–boost input current shaper followed by a buck and a buck–boost converter, respectively. As a result, the proposed converter can operate with larger duty cycles compared with the existing single‐stage single‐switch topologies, hence, making them suitable for extreme step‐down voltage conversion applications. Several desirable features are gained when the three integrated converter cells operate in discontinuous conduction mode. These features include low semiconductor voltage stress, zero‐current switch at turn‐on, and simple control with a fast well‐regulated output voltage. A detailed circuit analysis is performed to derive the design equations. The theoretical analysis and effectiveness of the proposed approach are confirmed by experimental results obtained from a 100‐W/24‐Vdc laboratory prototype. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A new single‐stage‐isolated ac–dc converter that can guarantee both high efficiency and high power factor is proposed. It is based on a new dc–dc topology that has prominent conversion ratio similar to that of boost topology so that it is adequate to deal with the universal ac input. In addition, since it utilizes the transformer more than others based on the general flyback topology, the size of whole power system can be reduced due to the reduced transformer. Moreover, the voltage stresses on the secondary rectifiers can be clamped to the output voltage by adopting the capacitive output filter and clamp diode, and the turn‐off loss in the main switch can be reduced by utilizing the resonance. Furthermore, since this converter operates at the boundary conduction mode, the line input current can be shaped as the waveform of a line voltage automatically and the quasi‐resonant zero‐voltage switching can be obtained. Consequently, it features higher efficiency, lower voltage stress, and smaller sized transformer than other topologies. A 100 W prototype has been built and tested as the validation of the proposed topology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a new hybrid dc–dc converter with low circulating current within the freewheeling interval, wide range of zero‐voltage switching and reduced output current ripple is presented. The proposed hybrid circuit includes two three‐level pulse‐width modulation converters and a series resonant converter with the shard lagging‐leg switches. Series resonant converter is operated at fixed switching frequency (close to series resonant frequency) to extend the zero‐voltage switching range of lagging‐leg switches. The output of series resonant converter is connected to the secondary sides of three‐level converters to produce a positive rectified voltage instead of zero voltage. Hence, the output inductances can be reduced. The reflected positive voltage is used to decrease the circulating current to zero during the freewheeling interval. Therefore, the circulating current losses in three‐level converters are improved. Finally, experiments are presented for a 1.44 kW prototype circuit converting 800 V input to an output voltage 24 V/60A. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A high‐efficiency zero‐voltage‐zero‐current‐switching DC–DC converter with ripple‐free input current is presented. In the presented converter, the ripple‐free boost cell provides ripple‐free input current and zero‐voltage switching of power switches. The resonant flyback cell provides zero‐voltage switching of power switches and zero‐current switching of the output diode. Also, it has a simple output stage. The proposed converter achieves high efficiency because of the reduction of the switching losses of the power switches and the output diode. Detailed analysis and design of the proposed converter are carried out. A prototype of the proposed converter is developed and its experimental results are presented for validation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A novel isolated high voltage‐boosting converter, derived from the traditional forward converter, is presented in this paper. As compared with the traditional forward converter, the demagnetizing winding of the transformer in the proposed converter is used not only to demagnetize but also to improve the voltage conversion ratio. Therefore, the duty cycle is not limited, and the utilization of the transformer, also called coupled inductor, can be increased also. Furthermore, the proposed converter maintains the advantage of possessing a non‐pulsating output current, leading to a small output voltage ripple. Moreover, by applying one additional voltage‐boosting winding to the transformer, the voltage conversion ratio can be significantly improved. In addition, an active clamp circuit is employed in the proposed converter to reduce the voltage stress of the main switch, caused by the leakage inductance in the transformer, and the switches can achieve zero‐voltage switching. Finally, the analysis of operating principles, choice of the turns, turns ratio, core size, and each wire size of the coupled inductor are described in detail, and the experimental results with a prototype with 12‐V input voltage, 100‐V output voltage, and 100‐W output power are provided to verify the feasibility and effectiveness of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A unified multi‐stage power‐CMOS‐transmission‐gate‐based quasi‐switched‐capacitor (QSC) DC–DC converter is proposed to integrate both step‐down and step‐up modes all in one circuit configuration for low‐power applications. In this paper, by using power‐CMOS‐transmission‐gate as a bi‐directional switch, the various topologies for step‐down and step‐up modes can be integrated in the same circuit configuration, and the configuration does not require any inductive elements, so the IC fabrication is promising for realization. In addition, both large‐signal state‐space equation and small‐signal transfer function are derived by state‐space averaging technique, and expressed all in one unified formulation for both modes. Based on the unified model, it is all presented for control design and theoretical analysis, including steady‐state output and power, power efficiency, maximum voltage conversion ratio, maximum power efficiency, maximum output power, output voltage ripple percentage, capacitance selection, closed‐loop control and stability, etc. Finally, a multi‐stage QSC DC–DC converter with step‐down and step‐up modes is made in circuit layout by PSPICE tool, and some topics are discussed, including (1) voltage conversion, output ripple percentage, and power efficiency, (2) output robustness against source noises and (3) regulation capability of converter with loading variation. The simulated results are illustrated to show the efficacy of the unified configuration proposed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
This paper studies and implements a 15‐W driver for piezoelectric actuators. The discussed driver is mainly composed of a flyback converter and a power operational amplifier (P‐OPA). The flyback converter produces a variable DC voltage to supply the P‐OPA, which outputs an amplified sinusoidal signal with a DC bias of 100 V to drive the piezoelectric actuator. The power losses can be reduced because the supply voltage of the P‐OPA varies with the peak of the input signal. The power conversion efficiency of the driver can thus be promoted up to more than 30%. From the experimental results, the implemented prototype possesses some advantageous features, such as a nearly constant output‐to‐input voltage gain, a high slew rate, a high input impedance, a low output impedance, and low output voltage ripples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents an active‐clamping zero‐voltage‐switching (ZVS) isolated inverse‐SEPIC converter. The high voltage spikes when turning off the switches are eliminated. The energies stored in the parasitic elements can be recycled to achieve the ZVS of switches. Therefore, the conversion efficiency increases substantially, yet with a reduced circuit cost. Detailed analysis and design of the proposed topology are described. Experimental results are recorded for a prototype converter with a DC input voltage ranging from 130 to 180 V, an output voltage of 12 V and a rated output power of 120 W, operating at a switching frequency of 65 kHz. The average active‐mode efficiency is above 88%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号