首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
以二级乙等铝矾土和工业废料粉煤灰、煤矸石为原料,采用常压高温烧结技术,在温度为1 250~1 450℃烧结制备出了适用于煤层压裂的陶粒支撑剂,并对其进行树脂覆膜预固化处理。探索了不同原料配比、覆膜对陶粒支撑剂的性能影响;利用SEM、XRD和破碎率等分析手段,研究了烧结温度对陶粒的晶相结构、显微形貌、密度和强度的影响。研究结果表明:当铝矾土加入量为40%、粉煤灰20%、煤矸石40%,烧结温度在1 350℃时,制备出的陶粒支撑剂体积密度为1.37 g/cm~3,视密度为2.63 g/cm~3,35 MPa闭合压力下的破碎率为6.98%,通过树脂包覆陶粒后,其强度进一步提升,破碎率低至2.23%。  相似文献   

2.
《矿冶》2016,(6)
利用河北某铁尾矿和废石为原料制备了建筑外墙防火陶瓷保温材料。对铁尾矿和废石进行了ICP-AES分析、化学成分分析、X射线衍射物相分析、TG-DSC热分析和放射性检测。在此基础上研究了原料配比、原料粉磨细度、发泡剂用量、发泡剂粒度、烧成制度与建筑外墙陶瓷保温材料性能之间的关系。结果表明,以放射性合格的铁尾矿和废石制备建筑外墙防火陶瓷保温材料技术可行。合适的物料配比为铁尾矿用量为40%~55%,废石用量为45%~60%,发泡剂外掺量为0.5%;原料粉磨细度控制在7.45μm(D50)左右;发泡剂粉磨细度为0.037mm(D90);烧成温度1160℃,烧成时间60 min;制备的建筑外墙防火陶瓷保温材料干密度为350 kg/m3,吸水率为0.48%,导热系数为0.09 W/(m·K),抗压强度为2.20 MPa,抗折强度为1.46 MPa,防火等级为A级。  相似文献   

3.
利用河北某铁尾矿和废石为原料制备了建筑外墙防火陶瓷保温材料。对铁尾矿和废石进行了ICP-AES分析、化学成分分析、X射线衍射物相分析、TG-DSC热分析和放射性检测。在此基础上研究了原料配比、原料粉磨细度、发泡剂用量、发泡剂粒度、烧成制度与建筑外墙陶瓷保温材料性能之间的关系。结果表明:以放射性合格的铁尾矿和废石制备建筑外墙防火陶瓷保温材料技术可行。合适的物料配比为铁尾矿用量为40~55%,废石用量为45~60%,发泡剂外掺量为0.5%;原料粉磨细度控制在7.45μm(D50)左右;发泡剂粉磨细度为0.037mm(D90);烧成温度1160℃,烧成时间60min;制备的建筑外墙防火陶瓷保温材料干密度为350kg/m3,吸水率为0.48%,导热系数为0.09W/(m?K),抗压强度为2.20MPa,抗折强度为1.46MPa,防火等级为A级。  相似文献   

4.
我国尾矿资源的综合利用一直是一个难题。以山西某碱铝硅质型铜尾矿为主要原料制备了高强陶粒轻集料。基于原料化学成分分析进行物料配比试验、粉磨试验、造粒试验及设计L16(45)烧成制度正交试验研究,结果表明,优选试验配方(质量配比)为:铜尾矿50%、长石25%、白云石10%、废弃土15%、黏结剂水玻璃的用量(原料质量比)为5%。确定最优烧成制度为:预热温度800℃、预热时间20 min、烧成温度1 170℃、烧成时间15 min。最终烧制出的尾矿陶粒轻集料堆积密度为874 kg/m3,筒压强度达到7.5 MPa,吸水率为2.1%,为铜尾矿的高附加值综合利用提供了一个新的解决方案。   相似文献   

5.
以直接还原选矿尾渣为主要原料,添加城市污水处理厂剩余污泥制备轻质陶粒,考察了烧制过程中各主要因素(预热温度、预热时间、焙烧温度、焙烧时间和原料配比)对陶粒性能(表观密度、堆积密度、1 h吸水率和颗粒强度)的影响,最终确定了烧制陶粒的最佳工艺条件。结果表明,尾渣与污泥的最佳质量比为尾渣∶污泥=95∶5,烧制陶粒的最佳工艺条件为:预热温度550℃,预热时间30 min,焙烧温度1 110℃,焙烧时间6 min,此时制得的陶粒表观密度为1.365 g/cm3,堆积密度0.672 g/cm3,1 h吸水率3.50%,颗粒强度220 N,筒压强度3.5 MPa。  相似文献   

6.
利用拜耳法赤泥制备烧胀陶粒的研究   总被引:1,自引:0,他引:1  
以拜耳法赤泥为主要原料,通过掺加废玻璃、粉煤灰等固体废弃物,再加入少量的添加剂制备烧胀陶粒。结果表明,赤泥的掺加量和焙烧温度是影响陶粒的物理性能和显微结构的主要影响因素。当赤泥的掺加量为50%、焙烧温度为1140℃时,可得到外表面玻璃化程度良好、内部孔隙比较均匀、以封闭孔为主的陶粒。该陶粒的主要成分为赤铁矿、水钙铝榴石、钙长石、钙钛矿、霞石和玻璃体。陶粒的颗粒抗压强度为0.6kN,吸水率为0.4%,表观密度为1.31g/cm3。  相似文献   

7.
为了降低支撑剂的生产成本,利用煤矸石制备出莫来石基陶瓷支撑剂。实验主要涉及强力混合机内支撑剂的成球造粒工艺和后续不同温度下的烧结过程。通过研究所制备陶粒支撑剂的物相组成、微观结构、密度及破碎率发现:随着烧结温度的升高,支撑剂主要物相转变为棒状莫来石,并形成交联穿插结构,有助于提高支撑剂的致密度,从而造成在35 MPa闭合压力下支撑剂的破碎率呈下降趋势,当温度为1 450℃时,破碎率达到最低值6.76%。由于制备工艺简单,设计可行,支撑剂性能良好,因此,合理开发利用固废煤矸石制备陶粒支撑剂具有较好的应用前景。  相似文献   

8.
本研究以给水厂残泥为主要原料,采用免烧法制成了给水厂残泥免烧陶粒(UCWTR),通过正交试验,确定了UCWTR制备的最佳配比。结果表明:原料的最佳质量配比为给水厂残泥60%、水泥15%、添加剂20%、激发剂5%,另外每100 g原料用水30~35 mL,水玻璃2 g。最佳质量配比条件下,WTR免烧陶粒在水中解体率为3.66%,强度较好,吸水率为31.76%,比表面积为17.837 m2/g,总孔容0.058 25 cm3/g,孔径3.920nm,破损率与磨损率之和为0.35%,含泥量为0.5%,堆积密度为900~950 kg/m3,表观密度1 000~1 200 kg/m3,满足规范要求。本研究制得的UCWTR性能良好,可作为一种陶粒滤料材料应用于水处理中。  相似文献   

9.
许娜 《矿冶》2016,25(5):55-58
石油压裂支撑剂是用于支撑水力裂缝的、具有一定强度的固体颗粒物质,其支撑岩层使裂缝始终保持张开状态的同时也有利于石油由地层流出。以云南某地低品位铝土矿为主要原料制备石油压裂支撑剂,考察了原料铁含量、烧结温度、升温速率对支撑剂制品的体积密度和破碎率的影响。结果表明,为获得满足石油行业标准的支撑剂制品,其原料中铁含量小于6%。最佳烧结温度为1380~1420℃,升温制度为干燥时间2 h(90℃),升温速率400℃/h(3.5 h),保温时间2 h时最佳。  相似文献   

10.
采用商洛铁尾矿制备堆积密度小于 300 kg/m3且抗压碎强度较高的超轻陶粒。研究原料配方、发泡剂含量、烧成温度及保温时间对铁尾矿基超轻陶粒性能的影响。结果表明,采用 80% 铁尾矿、10% 钾钠石粉和 10% 高岭土为原料,加入 0.6% 的 Si C 为发泡剂,经球磨、成型、烧成后可制备铁尾矿基超轻陶粒,堆积密度为 228 kg/m3,抗压碎强度为 1.07 MPa,筒压强度为 5.31 MPa,吸水率为 9.58%。采用该铁尾矿基超轻陶粒为轻骨料制备陶粒混凝土,抗折强度较聚苯颗粒混凝土提高 162%,抗压强度提高 400%。  相似文献   

11.
为实现河道底泥的无害化和资源化利用,以河道底泥为主要原料,膨润土、淀粉、石灰石为辅料,采用高温烧结法制备底泥陶粒。通过单因素试验探讨膨润土、淀粉、石灰石用量对陶粒性能的影响,采用正交试验优化陶粒的原料配比和焙烧工艺,并通过XRD、SEM分析陶粒的物相组成、微观结构。结果表明,适宜的原料配比为:底泥、膨润土、淀粉及石灰石的质量比70∶30∶10∶13,最佳的工艺条件为预热温度400 ℃、预热时间10 min、焙烧温度1 000 ℃、焙烧时间15 min。在该条件下制得的陶粒堆积密度为725.52 kg/m3、表观密度为1 326 kg/m3、吸水率为25.00%、抗压强度为3.32 MPa、除磷率为98.69%。底泥陶粒表面粗糙,孔隙结构丰富,吸水渗透性好,除磷率较高,是一种可以应用于水处理的陶粒滤料。  相似文献   

12.
以铁尾矿为原料,粉煤灰为成分校正剂制备高强轻质陶粒。利用热分析仪(TG-DSC)和X射线衍射仪(XRD)分析了原料的热反应过程,确定陶粒烧制温度范围。设计正交试验研究了成分配比、烧制温度、高温区升温速率和保温时间对陶粒堆积密度、表观密度、吸水率和筒压强度的影响,优化陶粒制备工艺。结果显示,陶粒的原料配比对堆积密度和表观密度影响较大,而烧制温度对吸水率和筒压强度影响较大。料球中Al2O3含量为17%,以10℃/min的速度升温至1 000℃,再以25℃/min的速度升温至1 210℃,保温30 min,所制备陶粒堆积密度888.20 kg/m3,表观密度为1 907.14 kg/m3,筒压强度为8.34 MPa,1 h吸水率为5.04%,满足国标GB/T 17431.1—2010中规定的900级轻质高强陶粒性能要求,为高硅铁尾矿的综合利用提供了一条新途径。   相似文献   

13.
为解决低硅铁尾矿大量堆存且利用难度大等问题,以杨家湾尾矿库低硅铁尾矿为主要原料,掺入了某铜尾矿和市售煤粉,通过烧结法制备轻质烧结陶粒,并考察了原料配比、水料比、尾矿粒度、烧结条件等因素对陶粒性能的影响。结果表明,质量配比为m(铁尾矿)∶m(铜尾矿)∶m(煤粉)=8∶1∶1(即铁尾矿掺量80%)、水料比1∶5、烧结温度1 120 ℃、烧结时间20 min的条件下制备出堆积密度为873.2 kg/m3、筒压强度5.13 MPa、1 h吸水率为7.65%的轻质陶粒,结合陶粒形貌、物相及热重分析,陶粒烧结过程中产生了起增强强度作用且呈致密网状结构的透辉石。该研究为低硅铁尾矿的资源化利用提供了新的利用途径。   相似文献   

14.
用粉煤灰制备多孔陶瓷过滤材料的研究   总被引:1,自引:0,他引:1  
熊林  刘晓荣 《矿冶工程》2010,30(4):91-94
以工业废弃物粉煤灰为原料, 制备多孔陶瓷过滤材料, 为优化配方和工艺参数, 采用正交试验研究了混合料水分、成型压力、粘结剂用量、造孔剂用量和烧结温度对多孔陶瓷性能的影响。研究结果表明:烧结温度和造孔剂用量对多孔陶瓷性能的影响最大, 粘结剂用量和成型压力次之, 混合料水分最小。在混合料水分24%、成型压力10.2 MPa、粘结剂用量4%、造孔剂用量35%、烧结温度1 180 ℃的条件下, 可获得以莫来石和石英为主要晶相的多孔陶瓷过滤材料, 其气孔率、抗弯强度、吸水率、体积密度和耐酸碱值分别为41.52%、9.37 MPa、36.38%、1.14g/cm3、96.15%和94.77%。SEM照片显示多孔陶瓷具有发达的气孔和很高的比表面积。  相似文献   

15.
以铝矾土、高岭土、凝灰岩、膨润土等非金属矿为主要原料,制备高强度的石油压裂支撑剂。运用单因素法研究了主要原料铝硅比、烧结温度以及烧结时间对支撑剂性能的影响。结果表明,原料中总铝硅比为1.9∶1时,1275℃下焙烧105 min,样品具有较好的抗压裂性能。采用多晶X-射线粉末衍射(XRD)、扫描电镜(SEM)等技术对其物相组成和结构进行表征,结果表明,高温下形成的刚玉、莫来石和蓝晶石相是样品具有较高强度的主要原因。  相似文献   

16.
用梅山铁尾矿制备免烧免蒸砖   总被引:11,自引:2,他引:11  
以梅山铁尾矿为原料,配以自制的胶结料,研制铁尾矿免烧免蒸砖.试验结果表明:将尾矿调整为合适的级配类型,在尾矿掺量为75%、自制JA-Ⅱ型胶结料掺量为18%、陶粒轻集料掺量为5%、JA1型外加剂掺量为2%、密度等级为2.0g/cm3、水固比为0.13条件下,制得的免烧免蒸砖抗压强度达24.89 MPa,且制品的其它性能满足GB5101-2003及GB6566-2001的要求.  相似文献   

17.
钨尾砂生物陶粒的制备及性能研究   总被引:2,自引:1,他引:1  
冯秀娟  余育新 《金属矿山》2008,38(4):146-148
以江西大余下垄钨矿的尾砂为原料,炉渣、粉煤灰、粘土为辅料,采用焙烧法进行了制备多孔生物陶粒滤料的试验研究。结果表明,在钨尾砂、炉渣、粉煤灰、粘土的体积比为4∶1.5∶1.5∶1,焙烧温度为1 100 ℃条件下,制备出的生物陶粒粒子密度为1.61 g/cm3、堆积密度为1.10 g/cm3、比表面积为9.7 m2/g、酸可溶率为0.17%、碱可溶率为0.33%、筒压强度为8.1 MPa。用该生物陶粒处理CODCr为817 mg/L的实际污水,挂膜速度快,微生物附着量大,易反冲洗,20 d CODCr下降率达到93%以上。  相似文献   

18.
为了提高酸浸钒渣的利用效率,以商洛千家坪钒渣为主要原料,添加黏土和粉煤灰制备建筑用烧结陶粒。对陶粒制备过程中各物料的配比、制粒工艺参数、预热和焙烧制度进行了系统研究。结果表明,物料配比为钒渣∶粘土∶粉煤灰=6∶1∶3、制粒用水量为18%、制粒时间为15 min、预热温度为400℃、预热时间为30 min、焙烧温度为1160℃、焙烧时间为20 min的条件下,可制得筒压强度为11.58 MPa,堆积密度为1014.7 kg/m3,吸水率为5.61%的高强陶粒。SEM和XRD分析结果表明,钒渣在烧结成陶粒的过程中主要产生了石英、斜长石和钾长石相,形成了结构致密、孔骨架良好的矿物集合体,因此提高了陶粒的强度。   相似文献   

19.
以烧结厂脱硫所产生的脱硫石膏和选铁后的铁尾矿为主要原料,对铁尾矿陶粒的配方和焙烧制度进行了研究。结果表明:尾矿、脱硫石膏、粉煤灰和煤粉的最佳质量配比为57.2%∶16.8%∶22.5%∶3.5%,在预热温度300℃,焙烧温度1110℃,焙烧时间30 min,冷却温度500℃的焙烧制度下烧制陶粒,性能满足 GB/T 17431.1-2010的质量要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号