首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of branch content (BC) and comonomer type on the mechanical properties of metallocene linear low‐density polyethylene (m‐LLDPEs) were studied by means of a stress–strain experiment at room temperature. A total of 16 samples with different BCs and comonomer types were used. In addition, the effect of crosshead speed on the mechanical properties of m‐LLDPEs with different BCs was examined. The degree of crystallinity (Xt) of these copolymers was determined by differential scanning calorimetry. In addition, Ziegler–Natta linear low‐density polyethylenes (ZN‐LLDPEs) were also studied for comparison purposes. The increase in BC of m‐LLDPEs decreased Xt and the modulus. However, the ZN‐LLDPEs showed higher small‐strain properties but lower ultimate properties than the m‐LLDPEs with similar weight‐average molecular weights and BCs. In comparison with low‐BC resins, m‐LLDPEs with high BCs exhibited a stronger strain hardening during the stress–strain experiments. Strain hardening was modeled by a modified Avrami equation, and the order of the mechanically induced crystal growth was in the range of 1–2, which suggested athermal nucleation. The crosshead speed was varied in the range 10–500 mm/min. For low‐BC m‐LLDPEs, there existed a narrow crosshead speed window within which the maxima in modulus and ultimate properties were observed. The location of the maxima were independent of BC. The effect of the crosshead speed on the mechanical properties of the m‐LLDPEs was a strong function of BC. However, highly branched m‐LLDPE in this experiment showed a weak dependence on the crosshead speed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 5019–5033, 2006  相似文献   

2.
Understanding the co‐crystallization behavior of ternary polyethylene (PE) blends is a challenging task. Herein, in addition to co‐crystallization behavior, the rheological and mechanical properties of melt compounded high density polyethylene (HDPE)/low density polyethylene (LDPE)/Zeigler ? Natta linear low density polyethylene (ZN‐LLDPE) blends have been studied in detail. The HDPE content of the blends was kept constant at 40 wt% and the LDPE/ZN‐LLDPE ratio was varied from 0.5 to 2. Rheological measurements confirmed the melt miscibility of the entire blends. Study of the crystalline structure of the blends using DSC, wide angle X‐ray scattering, small angle X‐ray scattering and field emission SEM techniques revealed the formation of two distinct co‐crystals in the blends. Fine LDPE/ZN‐LLDPE co‐crystals, named tie crystals, dispersed within the amorphous gallery between the coarse HDPE/ZN‐LLDPE co‐crystals were characterized for the first time in this study. It is shown that the tie crystals strengthen the amorphous gallery and play a major role in the mechanical performance of the blend.© 2016 Society of Chemical Industry  相似文献   

3.
In this paper, the implications of melt miscibility on the thermal and mechanical properties of linear low‐density polyethylene (LLDPE)/high‐density polyethylene (HDPE) blends were assessed with respect to the influence of the comonomer type. The influence of the latter was examined by selecting one butene LLDPE and one octene LLDPE of very similar weight‐average molecular weight (Mw), molecular‐weight distribution (MWD) and branch content, keeping the comonomer type as the only primary molecular variable. Each of the two metallocene LLDPEs was melt‐blended with the same HDPE at 190 °C in a Haake melt‐blender. The rheological, thermal and mechanical properties were measured by the use of an ARES rheometer, differential scanning calorimeter and Instron machine, respectively. The rheological measurements, made over the linear viscoelastic range, suggested no significant influence of the branch type on the melt miscibility. The rheology results are in agreement with those obtained from previous transmission electron microscopy (TEM) and small‐angle neutron scattering (SANS) studies. The dynamic shear viscosity and total crystallinity of the metallocene (m)‐LLDPE blends with HDPE followed linear additivity. At small strains, the branch type has little or no influence on the melt miscibility and solid‐state properties of the blends. Even the large‐strain mechanical properties, such as tensile strength and elongation at break, were not influenced by the comonomer type. However, the ultimate tensile properties of the HDPE‐rich blends were poor. Incompatibility of the HDPE‐rich blends, as a result of the weak interfaces between the blend components, is suggested to develop at large strains. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
In this paper, the implications of melt compatibility on thermal and solid‐state properties of linear low density polyethylene/high density polyethylene (LLDPE/HDPE) blends were assessed with respect to the effect of composition distribution (CD) and branch content (BC). The effect of CD was studied by melt blending a metallocene (m‐LLDPE) and a Ziegler‐Natta (ZN) LLDPE with the same HDPE at 190 °C. Similarly, the effect of BC was examined. In both cases, resins were paired to study one molecular variable at a time. Thermal and solid‐state properties were measured in a differential scanning calorimeter and in an Instron mechanical testing instrument, respectively. The low‐BC m‐LLDPE (BC = 14.5 CH3/1000 C) blends with HDPE were compatible at all compositions: rheological, thermal and some mechanical properties followed additivity rules. For incompatible high‐BC (42.0 CH3/1000 C) m‐LLDPE‐rich blends, elongation at break and work of rupture showed synergistic effects, while modulus was lower than predictions of linear additivity. The CD of LLDPE showed no significant effect on thermal properties, elongation at break or work of rupture; however, it resulted in low moduli for ZN‐LLDPE blends with HDPE. For miscible blends, no effect for BC or CD of LLDPE was observed. The BC of LLDPE has, in general, a stronger influence on melt and solid‐state properties of blends than the CD. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
This article presents the tensile properties and morphological characteristics of binary blends of the high‐density polyethylene (HDPE) and a linear low‐density polyethylene (LLDPE). Two constituents were melt blended in a single‐screw extruder. Injection‐molded specimens were evaluated for their mechanical properties by employing a Universal tensile tester and the morphological characteristics evaluated by using a differential scanning calorimeter and X‐ray diffractometer. It is interesting to observe that the mechanical properties remained invariant in the 10–90% LLDPE content. More specifically, the yield and breaking stresses of these blends are around 80% of the corresponding values of HDPE. The yield elongation and elongation‐at‐break are around 65% to corresponding values of HDPE and the modulus is 50% away. Furthermore, the melting endotherms and the crystallization exotherms of these blends are singlet in nature. They cluster around the corresponding thermal traces of HDPE. This singlet characteristic in thermal traces entails cocrystallization between these two constituting components. The clustering of thermal traces of blends near HDPE meant HDPE‐type of crystallites were formed. Being nearly similar crystallites of blends to that of HDPE indicates nearness in mechanical properties are observed. The X‐ray diffraction data also corroborate these observations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2604–2608, 2002  相似文献   

6.
Structure and mechanical properties were studied for the binary blends of a linear low density polyethylene (LLDPE) (ethylene‐1‐hexene copolymer; density = 900 kg m−3) with narrow short chain branching distribution and a low density polyethylene (LDPE) which is characterized by the long chain branches. It was found by the rheological measurements that the LLDPE and the LDPE are miscible in the molten state. The steady‐state rheological properties of the blends can be predicted using oscillatory shear moduli. Furthermore, the crystallization temperature of LDPE is higher than that of the LLDPE and is found to act as a nucleating agent for the crystallization of the LLDPE. Consequently, the melting temperature, degree of crystallinity, and hardness of the blend increase rapidly with increases in the LDPE content in the blend, even though the amount of the LDPE in the blend is small. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3153–3159, 1999  相似文献   

7.
The influences of ultrasonic oscillations on rheological behavior and mechanical properties of metallocene‐catalyzed linear low‐density polyethylene (mLLDPE)/low‐density polyethylene (LDPE) blends were investigated. The experimental results showed that the presence of ultrasonic oscillations can increase the extrusion productivity of mLLDPE/LDPE blends and decrease their die pressure and melt viscosity during extrusion. Incorporation of LDPE increases the critical shear rate for sharkskin formation of extrudate, crystallinity, and mechanical properties of mLLDPE. The processing behavior and mechanical properties of mLLDPE/LDPE blends were further improved in the presence of ultrasonic oscillations during extrusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2522–2527, 2004  相似文献   

8.
The present study investigated mixed polyolefin compositions with the major component being a post‐consumer, milk bottle grade high‐density polyethylene (HDPE) for use in large‐scale injection moldings. Both rheological and mechanical properties of the developed blends are benchmarked against those shown by a currently used HDPE injection molding grade, in order to find a potential composition for its replacement. Possibility of such replacement via modification of recycled high‐density polyethylene (reHDPE) by low‐density polyethylene (LDPE) and linear‐low‐density polyethylene (LLDPE) is discussed. Overall, mechanical and rheological data showed that LDPE is a better modifier for reHDPE than LLDPE. Mechanical properties of reHDPE/LLDPE blends were lower than additive, thus demonstrating the lack of compatibility between the blend components in the solid state. Mechanical properties of reHDPE/LDPE blends were either equal to or higher than calculated from linear additivity. Capillary rheological measurements showed that values of apparent viscosity for LLDPE blends were very similar to those of the more viscous parent in the blend, whereas apparent viscosities of reHDPE/LDPE blends depended neither on concentration nor on type (viscosity) of LDPE. Further rheological and thermal studies on reHDPE/LDPE blends indicated that the blend constituents were partially miscible in the melt and cocrystallized in the solid state.  相似文献   

9.
The dynamic rheological behavior of low‐density polyethylene (LDPE)/ultra‐high‐molecular‐weight polyethylene (UHMWPE) blends and linear low‐density polyethylene (LLDPE)/UHMWPE blends was measured in a parallel‐plate rheometer at 180, 190, and 200°C. Analysis of the log–additivity rule, Cole–Cole plots, Han curves, and Van Gurp curves of the LDPE/UHMWPE blends indicated that the blends were miscible in the melt. In contrast, the rheological properties of LLDPE/UHMWPE showed that the miscibility of the blends was decided by the composition of LLDPE. The differential scanning calorimetry results and scanning electron microscopy photos of the LLDPE/UHMWPE blends were consistent with the rheological properties, whereas with regard to the thermal and morphological properties of LDPE/UHMWPE blends, the results reveal three endothermic peaks and phase separation, which indicated a liquid–solid phase separation in the LDPE/UHMWPE blends. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Linear low density polyethylene (LLDPE) exhibits a complex molecular structure that is characterized by molar mass and chemical composition distributions. Both molecular parameters complementarily influence the final application properties. Typically, the molecular structure of commercial polyolefins is characterized by a set of technical parameters including the melt flow index, the crystallization and melting temperatures and the comonomer content as obtained using Fourier transform infrared or NMR spectroscopy. LLDPEs with high comonomer contents are typically regarded as plastomers or elastomers. Due to their low crystallinities, characterization of these materials using crystallization‐based analytical techniques is of limited use since the majority of the material is rather amorphous. Such materials need specific alternative analytical methods that may be based on molar mass and/or chemical composition fractionation. Here it is shown that for a comprehensive analysis of LLDPEs with similar bulk properties, preparative molar mass fractionation (pMMF) and advanced analysis of the fractions are required. The pMMF fractions are comprehensively analyzed using size exclusion chromatography, differential scanning calorimetry and high‐temperature high‐performance liquid chromatography to provide detailed information on molar mass and copolymer composition. Correlated information of these molecular parameters is obtained by comprehensive two‐dimensional liquid chromatography. © 2019 Society of Chemical Industry  相似文献   

11.
With the increasing ratio of waste tire powder (WTP) to low‐density polyethylene (LDPE), the hardness and tensile strength of the WTP/LDPE blends decreased while the elongation at break increased. Five kinds of compatibilizers, such as maleic anhydride‐grafted polyethylene (PE‐g‐MA), maleic anhydride‐grafted ethylene‐octene copolymer (POE‐g‐MA), maleic anhydride‐grafted linear LDPE, maleic anhydride‐grafted ethylene vinyl‐acetate copolymer, and maleic anhydride‐grafted styrene‐ethylene‐butylene‐styrene, were incorporated to prepare WTP/LDPE blends, respectively. PE‐g‐MA and POE‐g‐MA reinforced the tensile stress and toughness of the blends. The toughness value of POE‐g‐MA incorporating blends was the highest, reached to 2032.3 MJ/m3, while that of the control was only 1402.9 MJ/m3. Therefore, POE‐g‐MA was selected as asphalt modifier. The toughness value reached to the highest level when the content of POE‐g‐MA was about 8%. Besides that the softening point of the modified asphalt would be higher than 60°C, whereas the content of WTP/LDPE blend was more than 5%, and the blends were mixed by stirring under the shearing speed of 3000 rpm for 20 min. Especially, when the blend content was 8.5%, the softening point arrived at 82°C, contributing to asphalt strength and elastic properties in a wide range of temperature. In addition, the swelling property of POE‐g‐MA/WTP/LDPE blend was better than that of the other compalibitizers, which indicated that POE‐g‐MA /WTP/LDPE blend was much compatible with asphalt. Also, the excellent compatibility would result in the good mechanical and processing properties of the modified asphalt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
The thermal and mechanical properties of uncrosslinked three‐component blends of linear low‐density polyethylene (LLDPE), low‐density polyethylene (LDPE), and a hard, paraffinic Fischer–Tropsch wax were investigated. A decrease in the total crystallinity with an increase in both LDPE and wax contents was observed. It was also observed that experimental enthalpy values of LLDPE in the blends were generally higher than the theoretically expected values, whereas in the case of LDPE the theoretically expected values were higher than the experimental values. In the presence of higher wax content there was a good correlation between experimental and theoretically expected enthalpy values. The DSC results showed changes in peak temperature of melting, as well as peak width, with changing blend composition. Most of these changes are explained in terms of the preferred cocrystallization of wax with LLDPE. Young's modulus, yield stress, and stress at break decreased with increasing LDPE content, whereas elongation at yield increased. This is in line with the decreasing crystallinity and increasing amorphous content expected with increasing LDPE content. Deviations from this behavior for samples containing 10% wax and relatively low LDPE contents are explained in terms of lower tie chain fractions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1748–1755, 2005  相似文献   

13.
A poly(butylene terephthalate) (PBT)/linear low‐density polyethylene (LLDPE) alloy was prepared with a reactive extrusion method. For improved compatibility of the blending system, LLDPE grafted with acrylic acid (LLDPE‐g‐AA) by radiation was adopted in place of plain LLDPE. The toughness and extensibility of the PBT/LLDPE‐g‐AA blends, as characterized by the impact strengths and elongations at break, were much improved in comparison with the toughness and extensibility of the PBT/LLDPE blends at the same compositions. However, there was not much difference in their tensile (or flexural) strengths and moduli. Scanning electron microscopy photographs showed that the domains of PBT/LLDPE‐g‐AA were much smaller and their dispersions were more homogeneous than the domains and dispersions of the PBT/LLDPE blends. Compared with the related values of the PBT/LLDPE blends, the contents and melting temperatures of the usual spherulites of PBT in PBT/LLDPE‐g‐AA decreased. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1059–1066, 2002; DOI 10.1002/app.10399  相似文献   

14.
This article reports the toughness improvement of high‐density polyethylene (HDPE) by low‐density polyethylene (LDPE) in oscillating packing injection molding, whereas tensile strength and modulus are greatly enhanced by oscillating packing at the same time. Compared with self‐reinforced pure HDPE, the tensile strength of HDPE/LDPE (80/20 wt %) keeps at the same level, and toughness increases. Multilayer structure on the fracture surface of self‐reinforced HDPE/LDPE specimens can be observed by scanning electron microscope. The central layer of the fracture surface breaks in a ductile manner, whereas the break of shear layer is somewhat brittle. The strength and modulus increase is due to the high orientation of macromolecules along the flow direction, refined crystallization, and shish‐kebab crystals. Differential scanning calorimetry and wide‐angle X‐ray diffraction find cocrystallization occurs between HDPE and LDPE. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 799–804, 1999  相似文献   

15.
A novel series of shape memory blends of trans‐1,4‐polyisoprene (TPI) and low‐density polyethylene (LDPE) were prepared using a simple physical blending method. The mechanical, thermal and shape memory properties of the blends were studied and schemes proposed to explain their dual and triple shape memory behaviors. It was found that the microstructures played an important role in the shape memory process. In TPI/LDPE blends, both the TPI crosslinking network and LDPE crystalline regions could work as fixed domains, while crystalline regions of LDPE or TPI could act as reversible domains. The shape memory behaviors were determined by the components of the fixed and reversible domains. When the blend ratio of TPI/LDPE was 50/50, the blends showed excellent dual and triple shape memory properties with both high shape fixity ratio and shape recovery ratio. © 2017 Society of Chemical Industry  相似文献   

16.
The crystallization of a series of low‐density polyethylene (LDPE)‐ and linear low‐density polyethylene (LLDPE)‐rich blends was examined using differential scanning calorimetry (DSC). DSC analysis after continuous slow cooling showed a broadening of the LLDPE melt peak and subsequent increase in the area of a second lower‐temperature peak with increasing concentration of LDPE. Melt endotherms following stepwise crystallization (thermal fractionation) detailed the effect of the addition of LDPE to LLDPE, showing a nonlinear broadening in the melting distribution of lamellae, across the temperature range 80–140°C, with increasing concentration of LDPE. An increase in the population of crystallites melting in the region between 110 and 120°C, a region where as a pure component LDPE does not melt, was observed. A decrease in the crystallite population over the temperature range where LDPE exhibits its primary melting peaks (90–110°C) was noted, indicating that a proportion of the lamellae in this temperature range (attributed to either LDPE or LLDPE) were shifted to a higher melt temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1009–1016, 2000  相似文献   

17.
Melting curves, obtained by differential scanning calorimetry, are used to estimate crystal size distributions. The proposed theoretical analysis is applied to different types of polyethylene, including high‐density polyethylene (HDPE), metallocene catalyzed linear low‐density polyethylenes (m‐LLDPE), blends of m‐LLDPEs, and Ziegler‐Natta catalyzed LLDPEs (ZN‐LLDPE). Theoretical predictions are in agreement with experimental results. A generalized melting temperature equation successfully predicts the melting temperatures of all the LLDPEs, although it was initially proposed for homogeneous copolymers with excluded comonomers. A new definition of the heat of fusion for pure crystals is proposed. This heat of fusion can be calculated from the average crystal size or the crystal size number distribution.  相似文献   

18.
It is well known that the addition of a small amount of high‐pressure low‐density polyethylene (HP‐LDPE) to linear low‐density polyethylene (LLDPE) can improve the optical properties of LLDPE, and LLDPE/HP‐LDPE blend is widely applied to various uses in the field of film. The optical haziness of polyethylene blown films, as a result of surface irregularities, is thought to be as a consequence of the different crystallization mechanisms. However, not much effort has been directed toward understanding the effect of HP‐LDPE blending on the overall crystallization kinetics (k) of LLDPE including nucleation rate (n) and crystal lateral growth rate (v). In this study, we investigated the effect of blending 20% HP‐LDPE on the crystallization kinetics of LLDPE polymerized by Ziegler‐Natta catalyst with comonomer of 1‐butene. Furthermore, by combining depolarized light intensity measurement (DLIM) and small‐angle laser light scattering (SALLS), we have established a methodology to estimate the lateral growth rate at lower crystallization temperatures, in which direct measurement of lateral growth by polarized optical microscopy (POM) is impossible due to the formation of extremely small spherulites. This investigation revealed that HP‐LDPE blending leads to enhanced nucleation rate, reduced crystal lateral growth rate, and a slight increase in the overall crystallization kinetics of pure LLDPE. From the estimated crystal lateral growth rate, it was found that the suppression in v from HP‐LDPE blending is larger at lower temperatures than at higher temperatures. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Nonisothermal crystallization kinetics of linear bimodal–polyethylene (LBPE) and the blends of LBPE/low‐density polyethylene (LDPE) were studied using DSC at various scanning rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the nonisothermal crystallization process of LBPE and LBPE/LDPE blends. The theory of Ozawa was also used to analyze the LBPE DSC data. Kinetic parameters such as, for example, the Avrami exponent (n), the kinetic crystallization rate constant (Zc), the crystallization peak temperature (Tp), and the half‐time of crystallization (t1/2) were determined at various scanning rates. The appearance of double melting peaks and double crystallization peaks in the heating and cooling DSC curves of LBPE/LDPE blends indicated that LBPE and LDPE could crystallize, respectively. As a result of these studies, the Zc of LBPE increases with the increase of cooling rates and the Tp of LBPE for LBPE/LDPE blends first increases with increasing LBPE content in the blends and reaches its maximum, then decreases as the LBPE content further increases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2431–2437, 2003  相似文献   

20.
The influences of branch content on the miscibility of octene LLDPE made by metal‐locene catalyst (m‐LLDPE) and by Ziegler‐Natta LLDPE (ZN‐LLDPE) in LDPE were investigated with rheological methods. Dynamic and steady shear measurements were carried out in a Rheometrics Mechanical Spectrometer 800. Here, m‐LLDPEs were used to isolate interaction of molecular parameters. Blends of octene m‐LLDPE and ZN‐LLDPE with LDPE were mixed at 190°C in the presence of an adequate amount of antioxidant. The miscibilities of blends were revealed by the dependence of their measured ηo, η′ and G′ on blend composition as well as on agreement with predictions of different emulsion models. Blends of m‐LLDPE with LDPE were found to be almost miscible in the LLDPE branching range 10–30 branches/1000 C. However, immiscibility was found to develop at lower LLDPE branch contents. For ZN‐LLDPE/LDPE systems, branch content plays a significant role especially at low branch contents. The comparison of m‐LLDPE and ZN‐LLDPE systems suggest the strong influence of branch distribution (uniform and random, respectively). Palierne, Bousmina, and Scholz models fitted the loss and storage moduli data well with a value of α/R in the range 103?104 N/m2. Polym. Eng. Sci. 44:660–672, 2004. © 2004 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号