首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel poly(N‐isopropylacrylamide) (PNIPAAm)/chitosan (CS) semi‐interpenetrating polymer network hydrogel particles were prepared by inverse suspension polymerization. The prepared particles were sensitive to both temperature and pH, and they had good reversibility in solution at different temperatures and pH values. The swelling ratios of PNIPAAm/CS hydrogel particles decreased slightly with the addition of CS, which did not shift the lower critical solution temperature. The drug‐release behavior of the particles was investigated using cyclic adenosine 3′,5′‐monophosphate (cAMP) as a model drug. The release of cAMP from the hydrogel particles was affected by temperature, pH, and the CS content in the particles. These results showed that semi‐IPN hydrogel particles appeared to be of great promise in pH‐ and temperature‐sensitive oral drug release. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Gelatin and DNA were mixed together in various ratios followed by the addition of glutaraldehyde as a cross‐linker. FT‐IR spectroscopy confirmed the formation of a semi‐interpenetrating polymer network (semi‐IPN) between the gelatin and DNA. The gelatin–DNA semi‐IPN hydrogel underwent, reversibly, remarkable changes in swelling degree in response to the variation of pH. In the low‐pH range, the hydrogel showed a lower swelling degree; with an increment in pH, the hydrogel was highly swollen, which is considered to originate from the complexation and de‐complexation between gelatin and DNA, as was verified by turbidity measurements. Higher contents of DNA result in an increase in the swelling degree, which is presumably due to the easy outward expansion of free DNA moieties. The permeability coefficient, P, for a model molecule, cimetidine, through the semi‐IPN hydrogel membranes was determined in pH 1.0 and pH 12.0 buffer solutions. The results show that the permeation of cimetidine is responsive to pH change, and an evident variation in the P values occurs in response to the pH of the media. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

4.
The phosphorylated poly(vinyl alcohol) (P‐PVA) samples with various substitution degrees were prepared through the esterification reaction of PVA and phosphoric acid. By using chitosan (CTS), acrylic acid (AA) and P‐PVA as raw materials, ammonium persulphate (APS) as an initiator and N,N‐methylenebisacrylamide as a crosslinker, the CTS‐g‐PAA/P‐PVA semi‐interpenetrated polymer network (IPN) ssuperabsorbent hydrogel was prepared in aqueous solution by the graft copolymerization of CTS and AA and followed by an interpenetrating and crosslinking of P‐PVA chains. The hydrogel was characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques, and the influence of reaction variables, such as the substitution degree and content of P‐PVA on water absorbency were also investigated. FTIR and DSC results confirmed that PAA had been grafted onto CTS backbone and revealed the existence of phase separation and the formation of semi‐IPN network structure. SEM observations indicate that the incorporation of P‐PVA induced highly porous structure, and P‐PVA was uniformly dispersed in the polymeric network. Swelling results showed that CTS‐g‐PAA/P‐PVA semi‐IPN superabsorbent hydrogel exhibited improved swelling capability (421 g·g?1 in distilled water and 55 g·g?1 in 0.9 wt % NaCl solution) and swelling rate compared with CTS‐g‐PAA/PVA hydrogel (301 g·g?1 in distilled water and 47 g·g?1 in 0.9 wt % NaCl solution) due to the phosphorylation of PVA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   

6.
In this paper, attention is paid to synthesis and swelling behavior of a superabsorbent hydrogel based carboxymethylcellulose (CMC) and polyacrylonitrile (PAN). The physical mixture of CMC and PAN was hydrolyzed in NaOH solution to yield hydrogel, CMC–poly(NaAA‐co‐AAm). During alkaline hydrolysis, the nitrile groups of PAN were completely converted to a mixture of hydrophilic carboxamide and carboxylate groups followed by in situ crosslinking of the grafted PAN chains. A proposed mechanism for hydrogel formation was suggested and the structure of the product was established using FTIR spectroscopy. The reaction variables affecting the swelling capacity of the hydrogel were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. Swelling measurements of the synthesized hydrogels in various chloride salt solutions indicated a swelling‐loss with increase in the ionic strength of the salt solutions. The pH of the various solutions also affected the swelling of the superabsorbent. Furthermore, the present hydrogels showed a pH‐reversible property. Finally, the swelling kinetics of synthesized hydrogels with various absorbent particle sizes was briefly examined. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
An interpenetrating polymer network hydrogel composed of 2‐hydroxypropyltrimethyl ammonium chloride chitosan and poly(vinyl alcohol) was prepared. Its swelling properties and electroresponsive behavior in aqueous NaCl solutions were studied. The results indicated that the water uptake ability of the hydrogel decreased with increasing ionic strength of aqueous NaCl solution. The Young's modulus, elongation at break and tensile strength of the hydrogel swollen in deionized water were 4.29 MPa, 76.5% and 3.26 MPa, respectively. The hydrogel swollen in the NaCl solution bent toward the anode under non‐contact direct current electric fields, and its bending speed and equilibrium strain increased with increasing applied voltage. The electroresponsive behavior of the hydrogel was also affected by the electrolyte concentration of external NaCl solution, and there was a critical ionic strength of 0.10 where the maximum equilibrium strain of the hydrogel occurred. By changing the direction of the applied potential cyclically, the hydrogel exhibited good reversible bending behavior. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
The enzymatic degradation mechanism of semi‐interpenetrating network (semi‐IPN) hydrogel of poly (acrylic acid‐acrylamide‐methacrylate) crosslinked by azocompound and amylose in vitro was investigated in the presence of Fungamyl 800L (α‐amylase) and rat cecum content (cecum bacteria). The degradation mechanism involves degradable competition, i.e., reduction of azo crosslinkage is dominant in the earlier period of degradation. Subsequently, the degradation of gels is continued by combination of reduction of azo crosslinkage and hydrolysis of amylose. The cumulative release ratios of Bovine serum albumin (BSA, as a model drug) loaded semi‐IPN gels are 25% in pH 2.2 buffer solutions and 74% in pH 7.4 buffer solutions within 48 h. Moreover, the release behavior of BSA from the semi‐IPN gels indicates that it follows Fickian diffusion mechanism in pH 2.2 media and non‐Fickian diffusion and polymer chains relaxation mechanism in pH 7.4 media. The results indicate that the release of BSA from the semi‐IPN gels was controlled via a combined mechanism of pH dependent swelling and specificity to enzymatic degradation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Three series of novel semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropylacrylamide), PNIPA, and different amounts of the linear poly(N‐vinylpyrrolidone), PVP, were synthesized to improve the mechanical properties and thermal response of PNIPA gels. The effect of the incorporation of the linear PVP into the temperature responsive networks on the temperature‐induced transition, swelling/deswelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with varying molar ratios (25/1 to 100/1) of the monomer (N‐isopropylacrylamide) to the crosslinker (N,N′‐methylenebisacrylamide). The hydrogels were characterized by determination of the equilibrium degree of swelling, the dynamic shear modulus and the effective crosslinking density, as well as tensile strength and elongation at break. Furthermore, the deswelling kinetics of the hydrogels was studied by measuring their water retention capacity. The inclusion of the linear hydrophilic PVP in the PNIPA networks increased the equilibrium degree of swelling. The tensile strength of the semi‐interpenetrating networks (SIPNs) reinforced with linear PVP was higher than that of the PNIPA networks. The elongation at break of these SIPNs varied between 22% and 55%, which are 22 – 41% larger than those for pure PNIPA networks. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Amphiphilic semi‐interpenetrating polymer networks (semi‐IPN) hydrogels were prepared by a sequential‐IPN method by acrylic acid graft copolymerization into cationic starch in mild aqueous media of poly(dimethyldiallylammonium chloride). Some main factors were investigated to evaluate the swelling of hydrogels, and the network parameters Mc were given accordingly to elaborate the interaction between polymers. The chemical structure of the resulting hydrogel was confirmed using Fourier transform infrared spectroscopy. The cationic starch‐based semi‐IPN hydrogels achieved a high swelling capacity of 1070 g/g in deionized water and 94 g/g in 0.9 wt % NaCl solution, respectively) and high compressive stress in a high water content. Besides, a different pH‐dependent behavior was found for this semi‐IPN hydrogel. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
In this study, pH‐ and temperature‐responsive hydrogels based on linear sodium alginate (SA) and crosslinked poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by semi‐interpenetrating network (semi‐IPN) technique. The dually responsive hydrogels were characterized by FTIR, DSC, and SEM, and their temperature‐ and pH‐responsive behaviors were investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these hydrogels underwent volume phase transition at around 33°C irrespective of the pH value of the medium, but their pH sensitivity was evident only below their volume phase transition temperature. Under basic conditions, the swelling ratios of SA/PNIPAAm semi‐IPN hydrogels were greater than that of pure PNIPAAm hydrogel and increased with increasing SA content incorporated into the hydrogels, but the case was inverse under acidic conditions. The pulsatile swelling experiments indicated that the higher the SA content in SA/PNIPAAm semi‐IPN hydrogels, the faster the response rate to both pH and temperature change. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1931–1940, 2005  相似文献   

12.
Hydrogels composed of etherificated sodium alginate (ESA), sodium acrylic acid (NaAA), and poly (vinyl alcohol) (PVA) were synthesized by aqueous solution polymerization. The effects of reaction variables such as terminal pH, ions, and ionic strength on hydrogel swelling ratio (SR) were determined and compared. SR was influenced strongly by pH and ionic strength. SR increased with increasing pH but tended to decrease with PVA content. At a given ionic strength, SR of ESA/NaAA/PVA hydrogel was dependent on the valence of anion; SR was higher in multivalent anion salt solution than in monovalent anion salt solution, i.e., SRK2SO4 > SRKCl and SRNa2SO4 > SRNaCl. The swelling kinetic of the hydrogels showed Fickian kinetic diffusion in acidic media and non‐Fickian behavior in alkaline media. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A pH‐, temperature‐, and salt‐sensitive hydrogel was synthesized using acrylic acid (AA) as monomer, natural polysaccharide Aloe vera as backbone, ammonium persulfate–N,N‐methylene‐bis‐acrylamide as an initiator–crosslinker system via free‐radical grafting method. Different parameters such as treatment time, temperature, amount of solvent, pH, concentration of initiator, crosslinker and monomer were screened using Plackett–Burman design (PBD). The PBD showed that pH, monomer, and crosslinker were taken as the most important variables, which highly impact the swelling behavior of the synthesized hydrogel as compared to the rest of the variables. The half normality plot was used to find the significant parameters regarding the swelling capacity of the hydrogel. The center composite design was used for further optimizing the important variables like pH, monomer, and crosslinker. The pH and monomer interaction on percentage swelling (Ps) was studied through the analysis of variance model. Synthesized hydrogel Av‐cl‐poly(AA) was characterized by different techniques such as Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction, and scanning electron microscopy (SEM). The effect of different chloride salt solutions like KCl, NaCl, BaCl2, FeCl3, and CoCl3·6H2O on Ps of synthesized Av‐cl‐poly(AA)‐based hydrogel was also studied. Biodegradation studies of the synthesized polymer were also carried out using soil burial and vermicompositing methods. Biodegradation of semi interpenetrating polymer network (SIPN) was confirmed by SEM and FTIR techniques. Synthesized SIPN was also used as a device for the removal of dye and was found very effective as an adsorbent. POLYM. ENG. SCI., 59:2323–2334, 2019. © 2019 Society of Plastics Engineers  相似文献   

14.
The multifunctional double network (DN) soft hydrogels reported here are highly swellable and stretchable pH‐responsive smart hydrogel materials with sufficient strength and self‐healing properties. Such multifunctional hydrogels are achieved using double crosslinking structures with multiple physical and chemical crosslinks. They consist of a copolymer network of acrylamide (AM) and sodium acrylate (Na‐AA) and other reversible network of poly(vinyl alcohol)–borax complex. They were characterized by Fourier transform IR analysis and studied for their hydrogen bonding and ionic interaction. The degree of equilibrium swelling was observed to be as high as 5959% (at pH 7.0) for a hydrogel with AM/Na‐AA = 25/75 wt% in the network (GS‐6 sample). The highest degree of swelling was observed to be 6494% at pH 8.5. The maximum tensile strength was measured to be 1670, 580 and 130 kPa for a DN hydrogel (GS‐2 sample: AM/Na‐AA =75/25 wt% with 20, 40 and 60 wt% water content, respectively). The self‐healing efficiency was estimated to be 69% for such a hydrogel. These multifunctional DN hydrogels with amalgamation of many functional properties are unique in hydrogel materials and such materials may find applications in sensors, actuators, smart windows and biomedical applications. © 2018 Society of Chemical Industry  相似文献   

15.
Hydrogels were synthesized from poultry feather protein by crosslinking ethylene diamine tetraacetic dianhydride (EDTAD)‐modified feather protein isolate (FPI) with glutaraldehyde (Glu). Different molar ratios of EDTAD/FPI were used to obtain FPI of different degrees of acylate modification. Differential scanning calorimeter measurements of glass transition temperature suggested that hydrogel formation was based on the hydrogen bond between EDTAD‐modified FPI segments. The swelling properties of modified FPI hydrogel were investigated in deionized water and in solutions of different salt contents (i.e., ionic strengths) and pH. An optimal swelling ratio (SR) of 63 g/g was obtained when molar ratios of EDTAD/FPI and Glu/FPI were 0.12 and 0.008, respectively. SR decreased substantially with increase in ionic strength, and at a given ionic strength, SR increased with solution pH in 4.0 to 10.0 range. The water transport mechanism of the hydrogel was also pH dependent and was controlled by Fickian diffusion and polymer relaxation. At higher pH value, the water transport profile became more dependent on polymer relaxation than at lower pH. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
In this article, thermosensitive poly(N‐isopropyl acrylamide‐co‐vinyl pyrrolidone)/chitosan [P(NIPAM‐co‐NVP)/CS] semi‐interpenetrating (semi‐IPN) hydrogels were prepared by redox‐polymerization using N,N‐methylenebisacrylamide as crosslinker and ammonium persulfate/N,N,N′,N′‐tetramethylethylenediamine as initiator. Highly stable and uniformly distributed Ag nanoparticles were prepared by using the semihydrogel networks as templates via in situ reduction of silver nitrate in the presence of sodium borohydride as a reducing agent. Introduction of CS improves the hydrogels swelling ratio (SR) and stabilizes the formed Ag nanoparticles in networks. Scanning electron microscopy and transmission electron microscopy revealed that Ag nanoparticles were well dispersed with diameters of 10 nm. The semi‐IPN hydrogel/Ag composites had higher SR and thermal stability than its corresponding semi‐IPN hydrogels. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
A series of poly(acrylic acid‐co‐acrylamide)/kaolin [poly(AA‐co‐Am)/kaolin] composites were prepared by aqueous solution copolymerization of partially neutralized acrylic acid and acrylamide in the presence of kaolin nanopowder, which was synthesized to act as a release carrier of urea fertilizer. The superabsorbent composite was swollen in aqueous solution of urea to load urea, and the effect of urea concentration on the swelling was investigated. Furthermore, the effects of the contents of crosslinker, kaolin, and acrylamide, the neutralization degree of acrylic acid, and temperature, pH, and ionic strength of release medium on water absorbency and diffusion coefficient of urea release from poly(AA‐co‐Am)/kaolin were studied systematically. It was found that urea loading percentage could be adjusted by urea concentration of swelling medium, and urea diffusion coefficient could be regulated through the contents of crosslinker, kaolin, and acrylamide, and the neutralization degree of acrylic acid. Additionally, temperature and ionic strength of release medium may also affect the urea release process. The conclusions obtained could provide theoretical basis for urea diffusion behavior in superabsorbent used in agriculture. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

18.
In this study the poly(acrylamide‐co‐maleic acid) hydrogels containing small amounts of maleic acid have been synthesized, and the effect of pH, ionic strength, and nature of counterions on the equilibrium water uptake has been investigated. The incorporation of small amount of maleic acid results in the transition of swelling mechanism from Fickian to non‐Fickian. The equilibrium mass swelling has been found to increase with pH of the swelling medium while increase in ionic strength causes a decrease in the swelling. The amount of maleic acid present in the hydrogel affects the swelling behavior in rather an unusual way. With lower acid contents, the equilibrium mass swelling increases while higher concentrations of maleic acid cause a decrease in the degree of swelling. The hydrogels have been found to undergo a number of swelling–deswelling cycles when pH of the swelling medium changes from 8.0 to 2.0. Hydrogels require more time to deswell compared to the time required for swelling, which has been explained on the basis of the fact that gels follow different mechanisms for the two processes. Various swelling parameters such as equilibrium mass swelling, diffusion coefficient, intrinsic diffusion coefficient, swelling exponent, etc., have been evaluated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2782–2789, 2001  相似文献   

19.
In this study, a novel pH–temperature‐responsive copolymer was first synthesized by the radical copolymerization between HPA (2‐hydroxypropyl acrylate and 2‐hydroxyisopropyl acrylate) and AMHS (aminoethyl methacrylate hydrochloric salt). The molecular structure of the corresponding copolymer has been confirmed by 1H‐NMR and FTIR. The lower critical solution temperature of the resulting copolymer exhibited a considerable dependence upon the ratio of monomers and pH value in the medium. On the basis of the copolymer, a hydrogel as drug release carrier was prepared via the introduction of a crosslinker, N,N′‐methylenebisacrylamide. The swelling behaviors of hydrogel in the different pH value, temperature, and NaCl concentration have indicated that the hydrogel showed a remarkable phase transition at 31.5°C. The swelling ratio was increased with an increasing of pH value, especially in the greater pH values. By the use of caffeine as a model drug, we investigated the caffeine‐controlled release from hydrogel systematically as a function of pH value, temperature, and crosslinker content. The caffeine release was sensitive to the temperature. Only 55% caffeine was released from the hydrogel at room temperature, whereas ~ 92% caffeine diffused into the medium at 37°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
A series of intelligent hydrogels (poly(NIPA‐co‐GMA‐Dex)) were synthesized by copolymerization of N‐isopropylacrylamide (NIPA) and glycidyl methacrylate derivatized dextran (GMA‐Dex) in aqueous solution with different ratios. Their swelling behaviors at different temperatures and in different pH and ionic strengths, and their mechanical properties were studied. It has found that poly(NIPA‐co‐GMA‐Dex) hydrogels are temperature‐, pH‐, and ionic strength‐sensitive associated with the roles of the component PNIPA and GMA‐Dex, respectively. Most significantly, poly (NIPA‐co‐GMA‐Dex) hydrogels exhibit simultaneously good swelling properties and mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2435–2439, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号