共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature and pH‐responsive interpenetrating polymer network (IPN) hydrogels, constructed with poly(methacrylic acid) (PMAA) and poly(vinyl alcohol) (PVA), by a sequential IPN method, were studied. The characterization of IPN hydrogels was investigated by Fourier‐transform infrared spectroscopy, differential scanning calorimetry (DSC) and swelling under various conditions. The IPN hydrogels exhibited relatively high swelling ratios, in the range 230–380 %, at 25 °C. The swelling ratios of the PMAA/PVA IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the amounts of freezing and non‐freezing water. The amount of free water increased with increasing PMAA content in the IPN hydrogels. Copyright © 2004 Society of Chemical Industry 相似文献
2.
In this study, pH‐ and temperature‐responsive hydrogels based on linear sodium alginate (SA) and crosslinked poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by semi‐interpenetrating network (semi‐IPN) technique. The dually responsive hydrogels were characterized by FTIR, DSC, and SEM, and their temperature‐ and pH‐responsive behaviors were investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these hydrogels underwent volume phase transition at around 33°C irrespective of the pH value of the medium, but their pH sensitivity was evident only below their volume phase transition temperature. Under basic conditions, the swelling ratios of SA/PNIPAAm semi‐IPN hydrogels were greater than that of pure PNIPAAm hydrogel and increased with increasing SA content incorporated into the hydrogels, but the case was inverse under acidic conditions. The pulsatile swelling experiments indicated that the higher the SA content in SA/PNIPAAm semi‐IPN hydrogels, the faster the response rate to both pH and temperature change. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1931–1940, 2005 相似文献
3.
Wen Guang Liu Xiao Wei Li Gui Xiang Ye Shu Jun Sun Dunwan Zhu Kang De Yao 《Polymer International》2004,53(6):675-680
Gelatin and DNA were mixed together in various ratios followed by the addition of glutaraldehyde as a cross‐linker. FT‐IR spectroscopy confirmed the formation of a semi‐interpenetrating polymer network (semi‐IPN) between the gelatin and DNA. The gelatin–DNA semi‐IPN hydrogel underwent, reversibly, remarkable changes in swelling degree in response to the variation of pH. In the low‐pH range, the hydrogel showed a lower swelling degree; with an increment in pH, the hydrogel was highly swollen, which is considered to originate from the complexation and de‐complexation between gelatin and DNA, as was verified by turbidity measurements. Higher contents of DNA result in an increase in the swelling degree, which is presumably due to the easy outward expansion of free DNA moieties. The permeability coefficient, P, for a model molecule, cimetidine, through the semi‐IPN hydrogel membranes was determined in pH 1.0 and pH 12.0 buffer solutions. The results show that the permeation of cimetidine is responsive to pH change, and an evident variation in the P values occurs in response to the pH of the media. Copyright © 2004 Society of Chemical Industry 相似文献
4.
Temperature‐ and pH‐responsive semi‐interpenetrating polymer network (semi‐IPN) hydrogels constructed with chitosan and polyacrylonitrile (PAN) were studied. The characterizations of semi‐IPN hydrogels were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). IPN hydrogels exhibited a relatively high swelling ratio, 23.31%–145.20% at room temperature. The swelling ratio of hydrogels depends on pH and temperature. DSC was used to determine the amount of free water in IPN hydrogels. The amount of free water increased with increasing chitosan content in the semi‐IPN hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2011–2015, 2003 相似文献
5.
Sorption characterization of poly(vinyl alcohol)/chitosan interpenetrating polymer network hydrogels
Poly(vinyl alcohol) (PVA)/chitosan interpenetrating polymer networks (IPN) were prepared by UV irradiation. The water sorption behavior of the IPNs was measured at various temperatures and humidity levels. The water uptake of IPN13 is greater than that of other IPNs. Vapor sorption behavior is more affected by the density of water vapor than by hydrophilic properties with increasing temperature. Equilibrium water uptake increases as humidity increases, and the increase is more noticeable at high humidity. The sorption system of all IPNs is a relaxation‐controlled mechanism at a relative humidity (RH) of 90%, but it is a Fickian diffusion‐controlled mechanism when the RH is below 50%. With an increase in humidity, the diffusion coefficients were found to increase due to greater penetration of water into the IPNs. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 86–90, 2003 相似文献
6.
Rosalva S. Marques Tatiana C. O. Mac Leod Inez Valéria Pagotto Yoshida Valdir Mano Marilda D. Assis Marco A. Schiavon 《应用聚合物科学杂志》2010,115(1):158-166
Semi‐interpenetrating networks (Semi‐IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly(vinyl alcohol) (PVA) by the sol‐gel process in this study. The characterization of the PDMS/PVA semi‐IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (? OH) and hydrophobic (Si? (CH3)2) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi‐IPNs prepared, which led to a maximum equilibrium water content of ~ 14 wt % without a loss in the ability to swell less polar solvents. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
7.
The phosphorylated poly(vinyl alcohol) (P‐PVA) samples with various substitution degrees were prepared through the esterification reaction of PVA and phosphoric acid. By using chitosan (CTS), acrylic acid (AA) and P‐PVA as raw materials, ammonium persulphate (APS) as an initiator and N,N‐methylenebisacrylamide as a crosslinker, the CTS‐g‐PAA/P‐PVA semi‐interpenetrated polymer network (IPN) ssuperabsorbent hydrogel was prepared in aqueous solution by the graft copolymerization of CTS and AA and followed by an interpenetrating and crosslinking of P‐PVA chains. The hydrogel was characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques, and the influence of reaction variables, such as the substitution degree and content of P‐PVA on water absorbency were also investigated. FTIR and DSC results confirmed that PAA had been grafted onto CTS backbone and revealed the existence of phase separation and the formation of semi‐IPN network structure. SEM observations indicate that the incorporation of P‐PVA induced highly porous structure, and P‐PVA was uniformly dispersed in the polymeric network. Swelling results showed that CTS‐g‐PAA/P‐PVA semi‐IPN superabsorbent hydrogel exhibited improved swelling capability (421 g·g?1 in distilled water and 55 g·g?1 in 0.9 wt % NaCl solution) and swelling rate compared with CTS‐g‐PAA/PVA hydrogel (301 g·g?1 in distilled water and 47 g·g?1 in 0.9 wt % NaCl solution) due to the phosphorylation of PVA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
8.
Interpenetrating polymer network (IPN) hydrogels composed of poly(2‐ethyl‐2‐oxazoline) (PEtOz) and chitosan (CS) were prepared with radical polymerization and were characterized for their swelling properties. Sample OC11 (hydrogel weight ratio PEtOz/CS = 1/1) swelled more than samples OC21 (PEtOz/CS = 2/1) and OC31 (PEtOz/CS =3/1), exhibiting a swelling ratio of about 2000 wt % in deionized water; the swelling ratios of the other samples were about 1000 and 700 wt %. The swelling behavior of the IPN hydrogels was observed under various pH and temperature conditions. The swelling ratios of the samples ranged from about 2000 to 6500 wt % at lower pHs, with a maximum swelling ratio of about 6500 wt % in a pH 2 aqueous solution. They exhibited low critical solution temperature behavior, with sample OC31 more sensitive to temperature and sample OC11 more sensitive to pH. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1100–1103, 2006 相似文献
9.
Interpenetrating polymer networks (IPNs) composed of silk sericin (SS) and poly(N‐isopropylacrylamide) (PNIPAAm) were prepared simultaneously. The properties of the resultant IPN hydrogels were characterized by differential scanning calorimetry and SEM as well as their swelling behavior at various temperatures and pH values. The single glass transition temperature (Tg) presented in the IPN thermograms indicated that SS and PNIPAAm form a miscible pair. The swollen morphology of the IPNs observed by SEM demonstrated that water channels (pores present in SEM micrographs) were distributed homogeneously through out the network membranes. The swelling ratio of the IPNs depended significantly on the composition, temperature and pH of the buffer solutions. The dynamic transport of water into the IPN membrane was analyzed based on the Fickian equation. Copyright © 2006 Society of Chemical Industry 相似文献
10.
Semi‐interpenetrating polymer networks (semi‐IPNs), composed of chitosan and poly(hydroxy ethyl methacrylate) hydrogels, were prepared and the effects of various pH, temperatures, and an electric‐field on the swollen hydrogels were investigated. The swelling kinetics increased rapidly, reaching equilibrium within 60 min. Semi‐IPN hydrogels exhibited relatively high swelling ratios, 150~350%. The swelling ratio increased when the pH of the buffer was below pH 7 as a result of the dissociation of ionic bonds. Semi‐IPN hydrogels showed electroresponsiveness by shrinking when an electric field was applied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 86–92, 2005 相似文献
11.
Bending behavior of hydrogels composed of poly(methacrylic acid) and alginate by electrical stimulus
Interpenetrating polymer networks (IPNs) prepared from poly(methacrylic acid) (PMAAc) and sodium alginate (SA) exhibited electrical sensitive behavior. The swelling behavior of the PMAAc/SA IPN hydrogel was studied by immersion of the gel into aqueous HCl solutions at various concentrations and into various pH buffer solutions, and their responses to electric fields were also investigated. When swollen IPN hydrogel was placed between a pair of electrodes it exhibited bending behavior on application of an electric field, and showed stepwise bending behavior depending on the magnitude of the electrical stimulus. Copyright © 2004 Society of Chemical Industry 相似文献
12.
The molecular interactions between the component networks in poly(methacrylic acid)/poly(N‐isopropyl acrylamide) (PMAA/PNIPAAm) interpenetrating polymer networks (IPNs) were investigated using attenuated total reflectance (ATR)‐Fourier transform IR (FTIR) spectroscopy. Hydrogen‐bond formation was noted between the carboxyl groups of PMAA and the amide groups of PNIPAAm. The ATR‐FTIR results showed shifts in the carboxylic and amide groups, indicating the existence of hydrogen bonding between these two individual networks within the IPNs. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1077–1082, 2001 相似文献
13.
Using hydrophobic acrylic acid-2-ethylhexyl ester (AAEHE) as a comonomer of methacrylic acid (MAA), a series of hydrophobically modified (HM) poly(methacrylic acid) (PMAA) (HMPMAA) hydrogels were prepared by UV solution copolymerization and studied as controlled-release matrices. The result indicates that swelling degree of the HMPMAA hydrogels can sensitively respond to change in pH. However, the presence of hydrophobic AAEHE segments influences swelling kinetics of PMAA hydrogel evidently. Using p-hydroxyanisole (PHAS) as a model molecule, controlled-release behaviors of the HMPMAA hydrogels were investigated. It is found that the presence of hydrophobic AAEHE segments can markedly slow down the release rate of PHAS from PMAA-based hydrogels regardless of pH 1.4 or 7.4. 相似文献
14.
Jin Woo Lee So Yeon Kim Seong Soo Kim Young Moo Lee Kwang Hyun Lee Seon Jeong Kim 《应用聚合物科学杂志》1999,73(1):113-120
Interpenetrating polymer network (IPN) hydrogels composed of chitosan and poly(acrylic acid) (PAAc) were synthesized by UV irradiation method, and their structure, crystallinity, swelling behavior, thermal property, and mechanical property were investigated. Chitosan/PAAc IPNs exhibited relatively high equilibrium water content and also showed reasonable sensitivity to pH. From the swelling behaviors at various pH's, Fourier transform infrared spectra at high temperature and thermal analysis confirmed the formation of polyelectrolyte complex due to the reaction between amino groups in chitosan and carboxyl groups in PAAc. For this reason, even at a swollen state, the present chitosan/PAAc IPNs possess good mechanical properties. Particularly, the CA‐2 sample (with a weight ratio of chitosan/PAAc = 50/50, molar ratio [NH2]/[COOH] = 25/75) showed the lowest equilibrium water content and free water content, attributed to the more compact structure of the polyelectrolyte than CA‐1 or CA‐3 due to the high amount of interchain bond within the IPN. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 113–120, 1999 相似文献
15.
A series of novel semi‐interpenetrating polymer networks (IPNs) composed of poly[(acrylamide)‐co‐(sodium acrylate)] with varying amounts (5, 10, and 15 wt%) of poly[(vinylsulfonic acid), sodium salt] was synthesized. The semi‐IPN hydrogels were characterized by infrared spectroscopy. The swelling behavior of these IPNs was studied in distilled water/physiological solutions/buffer solutions/salt solutions. As the amount of poly[(vinylsulfonic acid), sodium salt] increased in the network, the swelling capacity of the semi‐IPNs increased considerably. The swelling and diffusion characteristics such as water penetration velocity (v), diffusion exponent (n), and diffusion coefficient (D) were calculated in distilled water, as well as in other physiological solutions. The highest swelling capacity was noted in urea and glucose solutions. The semi‐IPN hydrogels followed non‐Fickian diffusion behavior in water and physiological fluids, whereas Fickian behavior was observed in buffer solutions. The stimuli‐responsive characteristics towards physiological fluids, salt concentration, and temperature of these semi‐IPN hydrogels were also investigated. The swelling behavior of the semi‐IPNs decreased markedly with an increase of the concentration of the salt solutions. Copyright © 2006 Society of Chemical Industry 相似文献
16.
Semi‐interpenetrating polymer networks (semi‐IPNs) composed of a dicyanate resin and a poly(ether sulfone) (PES) were prepared, and their curing behavior and mechanical properties were investigated. The curing behavior of the dicyanate/PES semi‐IPN systems catalyzed by an organic metal salt was analyzed. Differential scanning calorimetry was used to study the curing behavior of the semi‐IPN systems. The curing rate of the semi‐IPN systems decreased as the PES content increased. An autocatalytic reaction mechanism was used to analyze the curing reaction of the semi‐IPN systems. The glass‐transition temperature of the semi‐IPNs decreased with increasing PES content. The thermal decomposition behavior of the semi‐IPNs was investigated. The morphology of the semi‐IPNs was investigated with scanning electron microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1079–1084, 2003 相似文献
17.
Sema Ekici 《Polymer International》2012,61(12):1758-1766
pH‐sensitive dextran–poly(methacrylic acid) (Dext–pMeAc) full interpenetrating network hydrogels (INHs) were prepared by simultaneous radical polymerization of methacrylic acid monomer (MeAc) and Dext polymer chains in the presence of N,N‐methylenebisacrylamide (MBA) as crosslinker in aqueous solution. These hydrogels were investigated as a drug carrier. The influence of MeAc and MBA contents in the network hydrogels on the swelling behaviour and mechanical strength of prepared Dext–pMeAc INHs was evaluated. Dext–pMeAc INHs were characterized by Fourier transform IR spectroscopy, and kinetic swelling measurements were carried out in deionized water and in simulated gastric fluids (pH 1.1 and pH 7.4). Dext–pMeAc/1‐1, Dext–pMeAc/3‐1 and Dext–pMeAc/5‐1 hydrogels with molar ratios of nDext/nMeAc = 10 and nMBA/nDext = 10, 30 and 50 respectively showed a core–shell structure when they swelled. This phenomenon was not observed in Dext–pMeAc/5‐2, Dext–pMeAc/5‐3 and Dext–pMeAc/5‐5 hydrogels containing a higher amount of Dext in the gels. The swelling data proved the formation of INHs with pH‐sensitive behaviour. A drug release study was performed using Rhodamine 6G fluorescent dye as a model hydrophilic bioactive molecule. The in vitro release rate of Rhodamine 6G from Dext–pMeAc/5‐3 hydrogel was dependent on the pH of the release medium. Copyright © 2012 Society of Chemical Industry 相似文献
18.
Muzaffer Ahmet Karaaslan Mandla A. Tshabalala Gisela Buschle‐Diller 《应用聚合物科学杂志》2012,124(2):1168-1177
Semi‐interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that its major constituent sugar was xylose. X‐ray analysis showed that the relative crystallinity of hydrogels increased with increasing hemicellulose content up to 31.3%. Strong intermolecular interactions between chitosan and hemicellulose were evidenced by FT‐IR analysis. Quantitative analysis of free amino groups showed that hemicellulose could interrupt the chemical crosslinking of chitosan macromolecules. Mechanical testing and swelling experiments were used to define the effective network crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and mainly consisted of H‐bonded bound water. Results revealed that by altering the hydrogel preparation steps and hemicellulose content, crosslink density and swelling behavior of semi‐IPN hydrogels could be controlled without deteriorating their mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
19.
Temperature‐responsive semi‐interpenetrating polymer networks (semi‐IPNs) constructed with chitosan and polyacrylonitrile (PAN) were crosslinked with glutaraldehyde. The semi‐IPN determined the sorption behavior of water at several temperatures and at a relative humidity (RH) of 95% using a dynamic vapor sorption (DVS) system. Water diffusion coefficients of semi‐IPNs were calculated according to the Fickian Law at several temperatures and exhibited a relatively water uptake, 0.1–0.4 at room temperature. The water uptake of hydrogels depended on temperature. The apparent activation energy was dependent of the composition of the semi‐IPN with value of 32.8–34.8 kJmol?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2721–2724, 2003 相似文献
20.
An interpenetrating polymer network hydrogel composed of 2‐hydroxypropyltrimethyl ammonium chloride chitosan and poly(vinyl alcohol) was prepared. Its swelling properties and electroresponsive behavior in aqueous NaCl solutions were studied. The results indicated that the water uptake ability of the hydrogel decreased with increasing ionic strength of aqueous NaCl solution. The Young's modulus, elongation at break and tensile strength of the hydrogel swollen in deionized water were 4.29 MPa, 76.5% and 3.26 MPa, respectively. The hydrogel swollen in the NaCl solution bent toward the anode under non‐contact direct current electric fields, and its bending speed and equilibrium strain increased with increasing applied voltage. The electroresponsive behavior of the hydrogel was also affected by the electrolyte concentration of external NaCl solution, and there was a critical ionic strength of 0.10 where the maximum equilibrium strain of the hydrogel occurred. By changing the direction of the applied potential cyclically, the hydrogel exhibited good reversible bending behavior. Copyright © 2011 Society of Chemical Industry 相似文献