首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some structural features of hydrogels from poly(acrylic acid) (PAAc) of various crosslinking degrees have been investigated through mechanical and swelling measurements. Interpenetrating polymer hydrogels (IPHs) of poly(vinyl alcohol) (PVA) and PAAc have been prepared by a sequential method: crosslinked PAAc chains were formed in aqueous solution by crosslinking copolymerization of acrylic acid and N,N‐methylenebisacrylamide in the presence of PVA. The application of freeze–thaw (F–T) cycles leads to the formation of a PVA hydrogel within the synthesized PAAc hydrogel. The swelling and viscoelastic properties of the IPHs were evaluated as a function of the content of crosslinker and the application of one F–T cycle. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5789–5794, 2006  相似文献   

2.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

3.
A novel hydrogel was prepared from industrial waste to form a green polymer with a higher swelling capacity. This hydrogel was synthesized by two methods for chemical crosslinking, namely crosslinking by radical polymerization and crosslinking by addition reaction. In crosslinking by radical polymerization, graft copolymerization of poly(vinyl alcohol) (PVA) and polyacrylamide (PAAm) was carried out using ceric ammonium sulfate in presence of N,N',‐methylenebisacrylamide, and then mixed with the black liquor resulting from alkaline pulping of rice straw. While, in crosslinking by addition reaction, the same above reagents were mixed with the black liquor in absence of the initiator. The black liquor is an industrial waste resulting from the pulping method and consists of dissolved lignin and carbohydrates. The black liquor causes environmental water pollution due to its dumping into the sea. The formed hydrogels were characterized using FT‐IR spectroscopy and scanning electron microscopy (SEM). It was noted that the hydrogel prepared by radical polymerization showed high swelling capacity, 60.00%, compared to that prepared by the addition reaction, 27.27%. The hydrogels formed were used also to study the influence of sodium chloride on the absorption capacity at room temperature and swelling ratios at different temperatures and pHs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Low-temperature gelation of poly(vinyl alcohol) (PVA) solution was performed in the presence of CaCl2. The resulting PVA hydrogels showed high stickiness and excellent water-holding ability. These properties became more remarkable with increasing CaCl2 concentration in solvent. Furthermore, both the peel strength on stainless steel and the degree of swelling of the PVA hydrogel drastically increased as CaCl2 concentration was increased from 20 to 30 wt %. It is concluded that the sticky and water-holding properties of PVA hydrogels are intimately related to the state of hydration of Ca ions in aqueous environment. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Chitosan and poly(vinyl alcohol)-based hydrogel films were synthesized using tartaric acid as a crosslinking agent. The films denoted as CVT were then characterized using Fourier transform infrared, Nuclear magnetic resonance, X-ray diffraction, and scanning electron microscopy analysis. TG/DTG and DSC analysis were also carried out for the determination of thermal properties of hydrogel films. Swelling properties of these hydrogel films were investigated at two different pHs and temperatures. The swelling behaviors of all samples were increased in acidic medium, while decreased in alkaline medium. The enzymatic degradation of the hydrogels was studied using lysozyme, and degradation rates were found to be parallel with the swelling ratio for CVT hydrogel. The hydrogels were also used for the amoxicillin release in KCl/HCl and PBS buffer solutions. The release behaviors of CVT hydrogel films were slower and can be controlled as compared with commercial drug release systems. CVT hydrogel films may be more appropriate for controlled release of amoxicillin.  相似文献   

6.
Crosslinked poly(N‐vinyl imidazole) (PVIm) hydrogels in the form of rods have been prepared by 60Co γ‐radiation initiated simultaneous polymerization and crosslinking of N‐vinyl imidazole in bulk and water. In binary aqueous systems, the percentage gelation decreased with increasing water content. The PVIm hydrogels synthesized were further protonated in HCl solutions of different concentration. PVIm and protonated PVIm (H‐PVIm) hydrogels have been characterized using spectroscopic and thermal methods, and the swelling behaviour of these two types of hydrogel has been investigated. PVIm hydrogels originally swelled to 600% (by volume) but in their protonated form at pH 7.0 reached 4000% swelling. © 2002 Society of Chemical Industry  相似文献   

7.
Low back pain caused by intervertebral disc degeneration is one of the most common spinal disorders among patients seeking medical treatment. The most common surgical treatments are spinal fusion and total disc arthroplasty, both of which are very invasive surgical procedures. Nucleus pulposus replacement is an earlier stage intervention for disc degeneration. One of the material classes being studied for this application is hydrogels: a three‐dimensional hydrated network of polymer(s), which mimics the mechanical and physiological properties of the nucleus. Poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), and poly(ethylene glycol) (PEG) hydrogels have previously been shown to be great candidate materials for injectable nucleus pulposus replacement, but have experienced issues with swelling and mass retention. The addition of chemical crosslinking to the PVA/PVP/PEG hydrogel system will allow tailoring of the swelling, mechanical, injectability, and mass loss properties of the hydrogel network. Two chemical crosslinking methods were evaluated for the PVA/PVP/PEG hydrogel system by characterizing the hydrogels with compression, swelling, and spectroscopy experiments. The results of these experiments led to the selection of the difunctional crosslinking strategy using PEG functionalized with terminal epoxide group (PEG diglycidyl ether) as the preferred crosslinking method. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40843.  相似文献   

8.
Copolymers composed of poly(vinyl alcohol) (PVA) and poly(dimethylsiloxane) (PDMS) were crosslinked with chitosan to prepare semi‐interpenetrating polymer network (IPN) hydrogels by an ultraviolet (UV) irradiation method for application as potential biomedical materials. PVA/PDMS copolymer and chitosan was cast to prepare hydrogel films, followed by a subsequent crosslinking with 2,2‐dimethoxy‐2‐phenylacetophenone as a nontoxic photoinitiator by UV irradiation. Various semi‐interpenetrating polymer networks (semi‐IPNs) were prepared from different weight ratios of chitosan and the copolymer of PVA/PDMS. Photocrosslinked hydrogels exhibited an equilibrium water content (EWC) in the range of 65–95%. Swelling behaviors of these hydrogels were studied by immersion of the gels in various buffer solutions. Particularly, the PCN13 as the highest chitosan weight ratio in semi‐IPN hydrogels showed the highest EWC in time‐dependent and pH‐dependent swelling. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2591–2596, 2002  相似文献   

9.
Poly(vinyl alcohol)/poly(N‐vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low‐temperature treatment and subsequent 60Co γ‐ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low‐temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low‐temperature treatment and γ‐ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion‐controlled kinetics. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2453–2463, 2006  相似文献   

10.
首先以蒽甲醛和聚乙烯醇(PVA)为原料、二甲基亚砜(DMSO)为溶剂、对甲苯磺酸(TsOH)为催化剂,反应得到蒽接枝改性聚乙烯醇(AnPVA)。然后利用混合溶剂凝胶法制备AnPVA水凝胶。通过差示扫描量热法(DSC)、拉伸等测试,研究水凝胶的力学等性能。结果表明,相比于纯PVA水凝胶,AnPVA水凝胶的力学性能得到了显著提高,在水凝胶中引入疏水基团是一种十分有效提高水凝胶力学性能的手段。AnPVA水凝胶浸泡于水中加热后无明显溶胀,有着优异的耐热和耐水性能,并且该水凝胶是物理交联网络,有着良好的循环重塑性能。  相似文献   

11.
The interpenetrating polymer network hydrogels based on poly(vinyl alcohol) were obtained by graft copolymerization of acrylamide and styrene onto polyvinyl alcohol in the presence of N,N′‐methylene bisacrylamide as a crosslinking agent. The hydrogels were characterized by optical microscopy, scanning electron microscopy, infrared spectral analysis, differential scanning calorimeter, and thermogravimetric analysis. The hydrogels showed enormous swelling in aqueous medium and displayed swelling characteristics, which were highly dependent on the chemical composition of the hydrogels and pH of the swelling medium. The kinetics of water uptake and the mechanisms of water transport were studied as a function of composition of the hydrogel and pH of the swelling medium. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1129–1142, 2005  相似文献   

12.
We report development of poly(vinyl alcohol) (PVA)-based novel injectable hydrogel nanocomposite scaffolds. Nanocellulose (NC), synthesized from agricultural biomass, was used as reinforcement within PVA matrix. The hydrogels were formed using physical crosslinking process involving multiple freeze–thaw cycles. A range of bio-nanocomposite hydrogels were prepared with varying concentrations of NC. With increasing loading of NC, crystallinity was found to be increased, which could be attributed to nucleating effect and crystalline nature of nanofibrillar cellulose. Investigation of microstructural surface topology indicated reduced surface perturbations upon incorporation of NC. Fourier transform infrared spectroscopy studies further indicated presence of characteristic functional groups and possible interactions between PVA and NC. Enhanced structural integrity and dynamic stability of the bio-nanocomposite hydrogels were also confirmed by carrying out rheological investigations at different frequency, amplitude, temperature, and time sweeps. Further, the bio-nanocomposite hydrogels demonstrated excellent injectability and self-standing behavior, establishing the promising potential as injectable scaffolds. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48789.  相似文献   

13.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) and poly(N‐isopropylacrylamide) were prepared by the sequential‐IPN method. The IPN hydrogels were analyzed for sorption behavior of water at 35°C and at a relative humidity of 95% using a dynamic vapor sorption system, and water diffusion coefficients were calculated. Differential scanning calorimetry was used for the quantitative determination of the amounts of freezing and nonfreezing water. Free water contents in the IPN hydrogel of IPN1, IPN2, and IPN3 were 45.8, 37.9 and 33.1% in pure water, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2041–2045, 2003  相似文献   

14.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) and 1‐vinyl‐2‐pyrrolidone were prepared by radical polymerization with 2,2‐dimethoxy‐2‐phenylacetophenone as a photoinitiator and N,N′‐methylenebisacrylamide as a crosslinker. The IPN hydrogels were analyzed for the sorption behavior of water at 35°C and a relative humidity of 95% with a dynamic vapor sorption system, and water diffusion coefficients were calculated. Differential scanning calorimetry was used to quantitatively determine the amounts of freezing and nonfreezing water. The free‐water contents in the IPN hydrogel samples PV51, PV31, and PV11 were 74.40, 64.03, and 60.48% in pure water, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 24–27, 2003  相似文献   

15.
Poly(vinyl alcohol) (PVA) was modified with phthalic and succinic anhydrides to give vinyl alcohol–vinyl ester copolymers that contain carboxylate groups. These half‐esters were then crosslinked by using the poly‐ (ethylene glycol) (PEG) 400 diglycidylether. Low crosslinker/carboxylate ratios were used to obtain low degrees of crosslinking, so the capacity of the resulting hydrogel to absorb water was high. Water absorption was determined gravimetrically as a function of time at room temperature. The equilibrium swelling ratio and compressive modulus were characterized for all the resulting PVA hydrogels and related to the network structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3026–3031, 2003  相似文献   

16.
pH‐sensitive anionic hydrogels composed of poly(vinyl alcohol) (PVA) and poly(γ‐glutamic acid) (γ‐PGA) were prepared by the freeze drying method and thermally crosslinked to suppress hydrogel deformation in water. The physical properties, swelling, and drug‐diffusion behaviors were characterized for the hydrogels. In the equilibrium swelling study, PVA/γ‐PGA hydrogels shrunk in pH regions below the pKa (2.27) of γ‐PGA, whereas they swelled above the pKa. In the drug‐diffusion study, the drug permeation rates of the PVA/γ‐PGA hydrogels were directly proportional to their swelling behaviors. The cytocompatibility test showed no cytotoxicity of the PVA/γ‐PGA hydrogels for the 3T3 fibroblast cell lines. The results of these studies suggest that hydrogels prepared from PVA and γ‐PGA could be used as orally administrable drug‐delivery systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Poly(vinyl alcohol) (PVA) was modified with phthalic anhydride to obtain half esters with carboxylic acid groups, which made the reaction with epichlorohydrin easier. The oxirane ring underwent a further crosslinking that led to crosslinked polymers with polar groups capable of interacting strongly with water and therefore with properties of hydrogels. The curing kinetics of the crosslinking were studied by differential scanning calorimetry, and the dependence of the activation energy on conversion degree was studied by isoconversional kinetic analysis. Water absorption was determined gravimetrically as a function of time at room temperature. The swelling behavior of these hydrogels was related to the degree of crosslinking. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 693–698, 2003  相似文献   

18.
Rheological behavior of poly(vinyl alcohol) (PVA) and poly(N-vinyl pyrrolidone) (PVP) mixtures in aqueous solutions and hydrogel state was investigated. The complex dependence of the viscosity on PVA/PVP mixture composition could be attributed to cumulative effects of electrostatic interactions, hydrogen bonding or association phenomena. Physical hydrogels were prepared by freezing/thawing method and their viscoelastic properties were followed as a function of number of cryogenic cycles and aging time at 37 °C. From swelling experiments, it was observed that the diffusion of water molecules into the hydrogel pores is Fickian (for low number of cryogenic cycles) and it becomes pseudo-Fickian as the sample is submitted to more than 10 freezing/thawing cycles. PVA/PVP hydrogels obtained by physical interactions present a high degree of tailorability and they are suitable candidates for biomedical applications.  相似文献   

19.
Semi‐ and full‐interpenetrating polymer network (IPN) hydrogels composed of poly(vinyl alcohol) and polyethyleneimine (PEI) were prepared to investigate the bending behavior under the electric response. To find out the characteristics of the hydrogel in the medium, swelling ratio, and rate and water state of the hydrogels were measured. The swelling ratio of the semi‐IPN hydrogels increased with PEI content in the matrix, whereas that of full‐IPN hydrogels dramatically decrease with increase of PEI contents in the hydrogels. In the water state of hydrogel, the bound water and free water of semi‐IPN hydrogels increased with PEI weight ratio. The full‐IPN hydrogels show the lower free water content in comparison with the semi‐IPN hydrogel. The IPN hydrogels exhibited bending angle change in response to external stimulus such as voltage, the bending angle increased with PEI concentration. In addition, the repeated bending behaviors according to the magnitude of the applied electric field revealed that the bending angle is reversible without collapse of formation of hydrogel in all samples. Thus, the hydrogels will be useful as novel modulation systems in the field of artificial organ and matrix for drug delivery. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The pH-responsive poly(vinyl alcohol)/poly(acrylic acid) hydrogel microparticles containing vitamin B12 were prepared with emulsion polymerization. Both microcapsule and microsphere were easily produced by simply changing the sequence of ingredient addition during the emulsion polymerization. The microparticles showed the faster and larger release of vitamin B12 due to the higher swelling of hydrogel by electrostatic repulsion of carboxylate groups in poly(acrylic acid) as the pH was changed into more basic condition. The microcapsules showed a faster release than the microspheres did due to the less hindered passage through the thinner shell of microcapsules. The poly(vinyl alcohol)/poly(acrylic acid) hydrogel microparticles either protected or released the vitamin B12 effectively depending on pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号