首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytosterols of manketti (Schinziophyton rautanenii) nut oil extracted by Soxhlet, mechanical shaking using hexane, screw press and supercritical carbon dioxide, were analyzed by gas chromatography with flame ionization detection and identified by gas chromatography–mass spectrometry. The presence of several phytosterols (campesterol, stigmasterol, β‐sitosterol, Δ5‐avenasterol, 22‐dihydrospinasterol and Δ7‐avenasterol) previously reported in manketti oil, was confirmed. In addition, another fourteen phytosterols (lanosterol, Δ5,23‐stigmastadienol, Δ7‐campesterol, clerosterol, obtusifoliol, Δ5,24(25)‐stigmastadienol, α‐amyrin, gramisterol, cycloeucalenol, cycloartenol, stigmasta‐8,24‐dienol‐3‐β‐ol, 28‐methylobtusifoliol, 24‐methylenecycloartenol and citrostadienol) were identified. The phytosterols, β‐sitosterol, Δ5‐avenasterol and campesterol, had the highest concentrations in oils extracted by all the methods, whereas stigmasterol and cycloartenol were abundant in oils extracted by mechanical shaking and supercritical carbon dioxide. Total phytosterols and the quantities of individual phytosterols differed significantly (p ≤ 0.05) in oils from the four extraction methods. Mechanical shaking extracted the highest levels of total sterols (22,100 mg/100 g oil), followed by supercritical fluid extraction (9,550 mg/100 g oil). Screw press and Soxhlet extracted oils contained the lowest levels of total sterols, 3,810 mg/100 g oil and 3,350 mg/100 g oil, respectively.  相似文献   

2.
This study investigated the content and composition of total, free, and esterified sterols of three varieties of lotus plumule oil (Hunan lotus, Jiangxi lotus, and Fujian lotus) using GC–MS/FID. The fatty acid composition of sterol fatty acid esters (SFAE) was also analyzed and compared with that of triglycerides. Results showed that total sterol of lotus plumule oil (12.10–14.21 g/100 g) was higher than that of other plant oils (corn germ oil, 1.11 g/100 g; rapeseed oil, 0.78 g/100 g). No significant difference was found among the total sterol contents of the three types of lotus plumule oils (p > 0.05). Most sterol existed in ester forms (81.8–89.1%) rather than in free forms (8.4–10.1%). β‐Sitosterol (71.4–73.4%), and campesterol (6.2–7.5%) were the predominant fractions of free sterols. β‐Sitosterol (41.3–53.7%) and ?5‐avenasterol (27.1–31.1%) were the predominant fractions of esterified sterols, followed by campesterol (12.1–13.0%) and ?7‐avenasterol (3.4–3.7%). Linoleic acid (63.6–65.8%), oleic acid (8.3–10.4%), and behenic acid (9.0–9.9%) were the main fatty acids of SFAE, which were different from those of triglycerides. The results from this study suggest that lotus plumule oil may be a good resource of SFAE and can be used as a supplemental ingredient in functional foods.  相似文献   

3.
The oil contents of seeds from paprika (Capsicum annuum L.) collected from different locations in Turkey and Italy varied in a relatively wide range from 8.5 g/100 g to 32.6 g/100 g. The fatty acid, tocopherol and sterol contents of the oils from different paprika seeds were investigated. The main fatty acids in paprika seed oils were linoleic acid (69.5–74.7 g/100 g), oleic acid (8.9–12.5 g/100 g) and palmitic acid (10.7–14.2 g/100 g). The oils contained an appreciable amount of γ‐tocopherol (306.6–602.6 mg/kg), followed by α‐tocopherol (7.3–148.7 mg/kg). The major sterols were β‐sitosterol (1571.4–4061.7 mg/kg), campesterol (490.8–1182.7 mg/kg), and Δ5‐avenasterol (374.5–899.6 mg/kg). The total concentration of sterols ranged from 3134.0 mg/kg to 7233.7 mg/kg. Remarkable amounts of cholesterol were found in the different samples (164.6–491.0 mg/kg). The present study showed that paprika seeds are a potential source of valuable oil that could be used for edible and industrial applications.  相似文献   

4.
Phytosterols occur in relatively high concentration in the seeds of rapeseed (Brassica napus L.) and in lower concentration in olive (Olea europaea L.) oil. The aim of this research was to investigate some new rapeseed varieties and olive genotypes that are grown in Northwest Turkey and to compare the phytosterol contents of both crops. For rapeseed, the data were collected in the growing seasons 2004–2005 from a field experiment with 19 new rapeseed varieties and three replications. For olives, 21 different varieties were used in the 2004–2005 and 2005–2006 growing seasons. The separation and identification of free phytosterols and the analysis of their contents were successfully achieved using the capillary column‐gas chromatographic method. According to the obtained results, for rapeseed, sitosterol (1.54–2.36 g/kg) was the major component of total phytosterols, followed by campesterol (0.02–1.58 g/kg) and brassicasterol (0.26–0.58 g/kg). Regarding the olive varieties, the sitosterol content changed between 1.03 and 2.01 g/kg, followed by avenasterol ranging from 0.07 to 0.44 g/kg. The brassicasterol, campesterol and stigmasterol contents did not affect the total amount of sterols. The total phytosterol content ranged between 4.25 and 11.37 g/kg for rapeseed and 1.29 and 2.38 g/kg for olives.  相似文献   

5.
The oil from Moringa stenopetala seeds variety Marigat from the island Kokwa was extracted using 3 different procedures including cold press (CP), extraction with n‐hexane and extraction with a mixture of chloroform:methanol (1:1) (CM). The yield of oil was 35.7% (CP) to 44.9% (CM). The density, refractive index, colour, smoke point, viscosity, acidity, saponification value, iodine value, fatty acid methyl esters, sterols, tocopherols (by high‐performance liquid chromatography), peroxide value, Eequation/tex2gif-stack-1.gif at 232 nm and the susceptibility to oxidation measured by the Rancimat method were determined. The oil was found to contain high levels of unsaturated fatty acids, especially oleic (up to 76.40%). The dominant saturated acids were behenic (up to 6.01%) and palmitic (up to 6.21%). The oil was also found to contain high levels of β‐sitosterol (up to 52.19%%of total sterols), stigmasterol (up to 16.53% of total sterols) and campesterol (up to 14.26% of total sterols). α‐, β‐ and δ‐tocopherols were detected up to levels of 98.00, 44.50 and 82.41 mg/kg of oil, respectively. The reduction of the induction period (at 120 °C) of M. stenopetala seed oil ranged from 29.4% to 54.7% after degumming. The M. stenopetala seed oil showed high stability to oxidative rancidity. The results of all the above determinations were compared with those of a commercial virgin olive oil and Moringa oleifera seed oil.  相似文献   

6.
Fatty acids, volatiles, sterols, aliphatic and triterpenic alcohols of six monovarietal Tunisian virgin olive oils were analyzed. The results suggested that the compositional data concerning the above analytical fractions were effective in discriminating between varieties. The oils were found to contain high levels of oleic acid (up to 71.70% in the Oueslati variety). β‐Sitosterol (up to 85.46% in the Jdallou variety) and Δ5‐avenasterol (up to 30.97% in the El Hor variety) were the principal sterols in all samples; campesterol and stigmasterol were found at low levels. (E)‐2‐Hexenal was the main compound that characterizes the olive oil headspace of all samples. The other compounds identified were mainly C6 aliphatic components.  相似文献   

7.
Acorn fruit oils from two species of oak, Quercus rotundifolia L. (holm‐oak) and Quercus suber L. (cork‐oak), were extracted by n‐hexane. The acorn fruit of Quercus rotundifolia L. was also extracted by supercritical CO2 at 18 MPa and 313 K, a superficial velocity of 2.5 × 10?4 ms?1, and a particle size diameter of 2.7 × 10?4 m. The oils were characterised in terms of fatty acids, triglycerides, sterols, tocopherols, and phospholipids. The main fatty acid in both fruit species was oleic acid (about 65%), followed by linoleic acid (about 16.5–17%) and palmitic acid (about 12.1–13.4%). The main triglyceride found in acorn oils was the OOO (oleic, oleic, oleic) triglyceride (33–38%), followed by the POO (palmitic, oleic, oleic) triglyceride (12.6–18.2%). In terms of sterols, the main component in acorn oils of both species was β‐sitosterol (83.5–89%), followed by stigmasterol (about 3%). However, in Quercus suber L., acorn oil was found to consist to 10.2% of campesterol. The amount of cholesterol was low (0.27% for the Quercus rotundifolia L. oil extracted by supercritical fluid extraction, and 0.18% for the oil extracted by n‐hexane). The Quercus suber L. acorn oil presented 0.1% of cholesterol. The total amount of tocopherols in Quercus rotundifolia L. acorn oils was almost the same when the oil was extracted by n‐hexane (973 mg/kg oil) or by supercritical CO2 (1006 mg/kg oil). The Quercus suber L. acorn oil presented a high value of total tocopherols (1486 mg/kg oil). The supercritical CO2 did not extract the phospholipids. The amount of phospholipids was very similar for both species of oak acorn oils extracted by n‐hexane. Oxidative stability was also studied, by using the peroxide value and the Rancimat method, revealing that all the oils were significantly protected against oxidation. The influence of storage, under several conditions, on the oxidative stability was also studied. The Quercus rotundifolia L. oil extracted by n‐hexane was better protected against oxidation after a few days of storage at 60 °C.  相似文献   

8.
This study highlights the effect of solvent polarity on the yield (Y%) and properties of oil extracted from Algerian sesame seeds. Extractions were carried out under Soxhlet conditions with the following solvents: hexane (Hx), ethanol (Eth), acetone (Ac), dichloromethane (Di), isopropanol (Iso), hexane:isopropanol (Hx:Iso), and chloroform:methanol (Chf:Me). The sesame oil yield obtained using different solvents ranged from 28.86 to 52.83%. Fatty acids and sterols analyses were performed by GC on capillary column. γ‐Tocopherol was the major tocochromanol compound detected by HPLC‐fluorescence. Fourteen fatty acids were identified, with the predominance of oleic and linoleic acids. The main sterol in sesame oil was β‐sitosterol, followed by stigmasterol, campesterol, and Δ5‐avenasterol which were present in lower concentrations. High correlations were found between arachidic, gadoleic, behenic, and lignoceric acids concentrations; these results were explained by the metabolic biosynthesis pathway of the biologically active long‐chain PUFA by successive elongation and desaturation. Principal component analysis (PCA) of the data obtained from sesame oil composition enabled an easy comparison of the different extraction solvents, and correlated their properties with the most characteristic components of the extracted oils with a view to understand solvent–oil interaction, and to establish the effects of extracting solvent on such oil composition. Practical applications: This study showed that the choice of solvent depends largely on the desired fraction to be extracted. Sesame oil was better extracted with less‐polar solvents but membrane‐associated lipids are more polar and require polar solvents capable of breaking hydrogen bonds or electrostatic forces. Owing to the differences in solvent capacity, the fatty acids, sterols, and tocopherols extracted along with the oil vary, leading to differences in the quality of the extracted oil. The results obtained in this study could be applied in industrial extraction to encourage the use of alternative extraction solvents.  相似文献   

9.
Hazelnut (Corylus avellana L.) oil was extracted with compressed carbon dioxide in the temperature range of 308—321 K and in the pressure range of 18—23.4 MPa. In addition the influence of the superficial velocity, within a tubular extractor was studied. Physical and chemical characteristics of the oil were obtained. The results including contents of free fatty acids, sterols, triacylglycerols and tocopherols were compared with those obtained when n‐hexane was used as solvent. No significant differences were found when the oils extracted by both methods were analysed. The main fatty acid was the oleic acid (83—85%), followed by linoleic acid (6—8%) and palmitic acid (5—6%). The main triglyceride found in hazelnut oils was the trioleylglycerol (OOO) (63.4—69.6%), followed by the linoleyl‐dioleylglycerol (LOO) (11.6—15.5%) and palmitoyl‐dioleylglycerol (POO) (9.9—10.4%). In terms of sterols, the main component was β‐sitos‐terol (∼83%) followed by campesterol (∼6%). The amount of cholesterol was very low (∼0.2%). The CO2 extracted oil contained about 17% more tocopherols (458.7 μg/g oil) than the oil extracted by n‐hexane (382.8 μg/g). Oxidative stability was studied by using the induction time determined by the Rancimat method. The oil obtained by supercritical fluid extraction (SFE) was slightly more protected against oxidation (8.7 h for SFE extracted oil and 6.7 h for the hazelnut oil extracted with n‐hexane). Both oils presented high stability index values (7.81 for the oil extracted by n‐hexane and 8.7 for the oil extracted with supercritical CO2). Oil extracted by supercritical CO2 was clearer than the one extracted by n‐hexane, showing some refining. Besides, the acidity index was 1.6 for the n‐hexane extracted oil and 0.9 for the oil extracted with supercritical carbon dioxide. The central composite non‐factorial design was used to optimise the extraction conditions, using the Statistica, version 5 software (Statsoft). The best results, in terms of recoveries of hazelnut oil by SFE, were found at 22.5 MPa, 308 K and superficial velocity of 6.0 × 10—4 ms—1.  相似文献   

10.
The phytosterol contents of the oils from 17 Turkish hazelnut cultivars were determined by gas chromatography with a flame ionization detector. The total phytosterol content varied from 1180.4 (Uzunmusa‐Ordu) to 2239.4 mg/kg (Cavcava), and the average was 1581.6 ± 265.1 mg/kg. One of the most significant commercial cultivars, Tombul, contained quite low total phytosterols (1297.7 mg/kg). Total and individual phytosterol contents of hazelnut cultivars were significantly different at p <0.01, except for phytostanol and campestanol. The main component was β‐sitosterol which ranged from 82.8 to 86.7% in all cultivars. This was followed by campesterol, Δ5‐avenasterol, sitostanol and stigmasterol. Interestingly, the same cultivars from different regions showed similar total phytosterol contents, and fall almost within the same range according to Duncan's test, which may indicate that the phytosterol content is highly related to the cultivar.  相似文献   

11.
Soybean extract residue (scum), a waste of soybean oil production, was examined as a raw material for C17‐ketosteroid production. As a model process, its bioconversion to 9α‐hydroxyandrost‐4‐ene‐3,17‐dione (9‐OH‐AD) by Mycobacterium sp VKM Ac‐1817D was studied. The content of transformable sterols (sitosterol, stigmasterol and campesterol) in scum was estimated at ~14%. The bioconversion of scum to 9‐OH‐AD was characterized by a long lag‐period (300–350 h) followed by 9‐OH‐AD accumulation. The microbial or chemical elimination of fatty non‐identified components resulted in sterol‐enriched scum preparations. Effective conversion of these preparations by Mycobacterium sp was demonstrated: 9‐OH‐AD molar yield ~65% was reached at 60 h from the scum preparation containing 10 g dm?3 transformable sterols. The process productivity was comparable with that for high quality‐sitosterol of wood origin (tall‐oil sitosterol). Copyright © 2004 Society of Chemical Industry  相似文献   

12.
This study aimed to determine and to compare the main phytochemicals from soybean and soybean germ of different Chinese varieties. The results indicate that the soybean germ contains low protein (38.19 %), lipids (10.98 %), and crude fiber (7.47 %) compared with soybean. Specific gravity, refractive index, and saponification values of soybean germ oil were comparable to those of soybean oil. However, unsaponifiable matter of the germ oil was significantly higher (6.982 %) than soybean oil (1.072 %). The tocopherol contents in soybean germ oil ranged as follows: γ-tocopherol, 176.39 mg/100 g oil; δ-tocopherol, 57.29 mg/100 g oil; α-tocopherol, 50.67 mg/100 g oil; and β-tocopherol, 8.15 mg/100 g oil. The main sterols in soy germ oil were β-sitosterol (1,681.90 mg/100 g oil), crevesterol (358.02 mg/100 g oil), stigmasterol (189.62 mg/100 g oil), and brassicasterol (3.70 mg/100 g oil). Furthermore, soybean germ oil seemed to be an important source of triglyceride, fatty acids, and particularly the fatty acids in the sn-2 position of triacylglycerol. The important nutritional value of all these phytochemicals makes soybean germ and particularly germ oil sources of functional molecules and additives for the food industry.  相似文献   

13.
Determination of the main phytosterols (Ps, β‐sitosterol and campesterol) and cholesterol precursors (desmosterol and lathosterol) in human serum using a simple GC‐FID method has been validated. Direct saponification, without lipid extraction, sterols extraction, and further derivatization was applied to samples prior to GC analysis. To evaluate the method, a pool of serum samples from eight healthy women was used. Good linearity (r>0.99) was found in the assay range: β‐sitosterol (0.99–17.82 µg/mL), campesterol (0.14–10.8 µg/mL), desmosterol (0.17–2.6 µg/mL), and lathosterol (0.6–5.97 µg/mL). Limits of detection (ng/mL) were: 86 (β‐sitosterol), 42 (campesterol), 4 (desmosterol), and 44 (lathosterol). Accuracy, estimated by recovery assays (%), were: 113 (β‐sitosterol), 114 (campesterol), 111 (desmosterol), and 102 (lathosterol). Within and between precision values (%), expressed as the relative SD (RSD), were: 2.6 and 8.1 (β‐sitosterol), 1.6 and 7.2 (campesterol), 2.1 and 7.9 (desmosterol), and 4.1 and 5.8 (lathosterol), respectively. The developed methodology allowed fast (1‐day analysis) and reliable quantification of sterols in serum, required a small volume of sample and reduced use of solvents. It therefore could be used in clinical assays for the determination of serum sterols, as in evaluating the pharmacological response to lipid‐lowering agents, and in assessing biological responses to Ps‐enriched diets. Practical applications : This methodology allows fast and reliable quantification of sterols in serum, requiring a small volume of sample and reduced use of solvents. It can be used as a routine method for the quantification of phytosterols and cholesterol precursors in clinical assays, and it is also suitable for monitoring biological responses to health‐promoting phytosterol‐enriched diets.  相似文献   

14.
The oil yield and composition of fatty acids, tocopherols, tocotrienols, sterols, carotenoids, and squalene in the seeds of three species—Hyptis suaveolens, Leonotis nepetifolia, Ocimum sanctum—belonging to the Lamiaceae family, are studied. The oil yields are 12.1%, 16.1%, and 29.0% in O. sanctum, H. suaveolens, and L. nepetifolia, respectively. The unsaturated fatty acids are a predominant group (86.8–92.1%) in all three investigated plants; however, the profile for each species is unique. The main fatty acid differs as follows: H. suaveolens—linoleic acid (85.8%), L. nepetifolia—oleic acid (58.3%), and O. sanctum—α‐linolenic (48.6%). γ‐Tocopherol accounts for over 97%, 90%, and 93% of the total tocochromanol content (sum of tocopherols and tocotrienols) in H. suaveolens, L. nepetifolia, and O. sanctum, respectively. Two tocotrienol homologues, α and γ, are detected only in L. nepetifolia. β‐Sitosterol is the main detected sterol (38–59%) in all three species. High levels of campesterol (18–20%), Δ5‐stigmasterol (9–21%), and Δ5‐avenasterol (7–12%) are also detected. Squalene is detected only in O. sanctum (45.8 mg/100 g oil). The content of sterols, tocochromanols, and carotenoids in the investigated Lamiaceae plant seed oils ranges between 279.5–576.3, 54.5–66.7, and 0.3–3.1 mg/100 g oil, respectively. Practical Applications: Lamiaceae plants are of medicinal interest due to the presence of a broad spectrum of bioactive molecules. The present study demonstrates that seeds of the species H. suaveolens, L. nepetifolia, and O. sanctum are rich sources of bioactive compounds of lipophilic nature. There is limited knowledge associated with the composition of tocopherols, tocotrienols, sterols, carotenoids, and squalene. The results of the studied medicinal plants may enhance future targeted applications in various sectors.  相似文献   

15.
The content and composition of fatty acids, sterols, tocopherols, and γ-oryzanol in wild rice (Zizania palustris) grown in North America were compared with those in regular brown rice (Oryza sativa L.). The lipid content of wild rice ranged from 0.7 to 1.1%, compared with 2.7% in regular brown rice. The lipids of wild rice comprised mainly linoleic (35–37%) and linolenic (20–31%) acids. Other fatty acids included palmitic (14.1–18.4%), stearic (1.1–1.3%), and oleic (12.8–16.2%). Wild rice lipids contained very large amounts of sterols, ranging from 70 g/kg for a Saskatchewan sample to 145 g/kg for Minnesota Naturally Grown Lake and River Rice. The main sterols found in an unsaponified fraction were: campesterol (14–52%), β-sitosterol (19–33%), Δ5-avenasterol (5–12%), and cycloartenol (5–12%). Some of sterols, γ-oryzanols, were present as the phenolic acid esters; the amount ranged from 459 to 730 mg/kg in wild rice lipids. The largest amounts of tocopherols and tocotrienols, 3682 and 9378 mg/kg, were observed in North Western Ontario wild rice samples, whereas the lowest were 251 mg/kg in an Athabasca Alberta sample and 224 mg/kg in regular long-grain brown rice. The α isomer was the most abundant among tocopherols and tocotrienols. The results of this study showed that wild rice lipids contain large amounts of nutraceuticals with proven positive health effects.  相似文献   

16.
In this study, the contents of total and individual phytosterols in sprouts made from seeds of seven canola (Brassica napus L.) lines (Acropolis, Banjo, Jetton, KS-7740, KSM3-1-124, Mussette and Virginia), grown at three locations in Virginia (Orange, Petersburg and Suffolk), were determined. Canola sprouts contained, on an average, 36.3 g sterols in 100 g of unsaponifiable matter (UNSAP), 10.7 mg sterols in 1 g of oil and 2.4 mg sterols in 1 g of dry sprouts. The contents of individual phytosterols (μg per g of oil) in canola sprouts were 1,162 brassicasterol, 3,799 campesterol, 34 stigmasterol, 5,359 β-sitosterol, 201 Δ5-avenasterol and 97 Δ7-stigmastenol. Canola lines had significant effects on the contents of oil, brassicasterol and campesterol. Locations had significant effects on the oil, UNSAP, total sterols, brassicasterol, stigmasterol and β-sitosterol. The oil content in canola sprouts was positively correlated with total sterols and Δ5-avenasterol, whereas oil content was negatively correlated with brassicasterol content. In general, the contents of campesterol and β-sitosterol increased with an increase in total sterol content. The concentrations of sterols were in the following decreasing order: β-sitosterol > campesterol > brassicasterol > Δ5-avenasterol > Δ7-stigmastenol > stigmasterol. These results indicate that canola sprouts may have the potential as a natural source of dietary sterols and might be desirable for human nutrition.  相似文献   

17.
To assess the potential of traditional selection breeding to develop varieties with increased phytosterol content, we determined concentrations of those sterols in canola, sunflower, and soybean seed oils produced from breeding lines of diverse genetic backgrounds. Seed oils were extracted and saponified, and the nonsaponifiable fractions were subjected to silylation. The major phytosterols brassicasterol, campesterol, stigmasterol and β-sitosterol, were quantified by capillary gas chromatography with flame-ionization detection. Canola contained approximately twice the amount of total phytosterols (4590–8070 μg g−1) as sunflower (2100–4540 μg g−1) or soybean (2340–4660 μg g−1) oils. Phytosterol composition varied among crops as expected, as well as within a crop. Both genetic background and planting location significantly affected total phytosterol concentrations. Soybean plants were maintained from flower initiation to seed maturity under three temperature regimes in growth chambers to determine the effect of temperature during this period on seed oil phytosterol levels. A 2.5-fold variability in total phytosterol content was measured in these oils (3210–7920 μg g−1). Total phytosterol levels increased with higher temperatures. Composition also changed, with greater percent campesterol and lower percent stigmasterol and β-sitosterol at higher temperatures. In these soybean oils, total phytosterol accumulation was correlated inversely with total tocopherol levels. Owing to the relatively limited variability in phytosterol levels in seed oils produced under field conditions, it is unlikely that a traditional breeding approach would lead to a dramatic increase in phytosterol content or modified phytosterol composition.  相似文献   

18.
Caesalpinia bonducella is an oilseed that is indigenous to Pakistan. The hexane-extracted oil content from the seed kernel was 17.3 ± 1.0% DM (dry matter). The proximate analysis of C. bonducella seed estimated protein, fiber and ash contents to be 20.8 ± 1.4, 5.3 ± 1.0 and 4.6 ± 0.8%, respectively. Trace metals were determined comparable to commonly consumed legume seeds. α-Tocopherol was the predominant tocopherol ranging from 345.10 to 460.21 mg/kg of oil, followed by γ- and δ-tocopherol. The major sterols were β-sitosterol, stigmasterol, campesterol, Δ5-avenasterol, Δ7-stigmastenol and Δ7 avenasterol. The kernel oil was found to contain a high level of linoleic acid (72.7 ± 1.0%) followed by oleic, stearic and palmitic acids. The high percentage of linoleic acid revealed that this oil is a potential source for the manufacture of cosmetics, paints, varnishes, soaps, liquid soaps and other products including biodiesel. These investigations suggest that C. bonducella oil is potentially an important dietary source of essential fatty acids and protein which could be employed for edible and commercial applications in various industries of Pakistan.  相似文献   

19.
A novel method for rapid and simultaneous analysis of three lignans and γ‐tocopherol in sesame oil has been established based on a one‐step solvent extraction followed by normal‐phase liquid chromatography. The briefness of the experimental procedure, use of 5 mL of n‐hexane/isopropanol (98:2, v/v) for extraction without any further cleanup process, short analysis time (10 min), and excellent sensitivity and selectivity demonstrated the advantages of this practical and efficient method. All the analytes exhibited satisfactory recoveries ranging from 95.4 to 103.4% at three spiked levels, with the relative SD ranging from 1.1 to 4.4%. The limits of quantitation of this method for four analytes were in the range of 0.3–1.0 μg g?1. The validated method was successfully applied to the coinstantaneous determination of lignan and γ‐tocopherol in five real sesame oil samples. Furthermore, the results of this study were compared with previously reported method and standard method.  相似文献   

20.
Sterol composition was determined for seed oils and leaf waxes in eleven taxa belonging to the genusCoincya (Brassicaceae) on the Iberian Peninsula (Spain and Portugal). Seed sterols ranged from 1.2 to 6.7%. The major components were sitosterol (42.6–54.6%), campesterol (20.4–33.2%), and brassicasterol (10.8–23.5%). In leaf waxes, the major free sterols were sitosterol (40.9–74.2%), campesterol (9.6–17.0%), and cholesterol (4.6–17.0%). In leaf wax esters, the major sterols were sitosterol (22.2–56.5%), cholesterol (7.3–32.8%), and campesterol (5.8–25.6%). An apparent substitution of brassicasterol in free sterols from the seeds by cholesterol in free sterols from the leaves was observed. There was an increase of cholesterol in sterols from leaf wax esters with respect to free sterols from leaves and seeds. InC. monensis subsp.nevadensis, the composition in sterols from leaf waxes may be an adaptation to low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号