共查询到20条相似文献,搜索用时 15 毫秒
1.
基于淮北某矿区的地震属性参数和钻井数据,利用逐步回归分析方法,优选出与煤层厚度有着显著相关性的参数,通过构建主成分分析算法-径向基函数神经网络模型,预测煤层厚度的变化趋势,并将井旁道的煤层厚度预测值保留,作为下一个未知区域预测模型的输入参数,从而获得更准确的煤层厚度预测值。通过不断扩展预测范围,并对其进行持续分析,从而实现整个研究区域煤层厚度的准确预测。分别对比RBF和PCA-RBF 2种神经网络模型预测的煤层厚度与真实值的绝对误差、相对误差以及相关系数,其中PCA-RBF神经网络模型的预测值与真实值之间的绝对误差为0~0.08 m,相对误差为0%~4%,相关系数为0.999 9。结果表明,PCA-RBF神经网络模型预测得到的煤层厚度变化趋势更接近于真实值,预测结果的精度更高,能够为煤矿安全生产、减少成本、提高效益提供强有力的技术支持。 相似文献
2.
3.
4.
5.
神经网络理论在预测巷道围岩变形中的应用 总被引:4,自引:1,他引:4
利用神经网络理论对巷道围岩变形预测问题进行了探讨,与利用灰色模型预测巷道围岩变形的结论作了比较。通过计算机模拟,构造了〔7~1〕BP模型神经网络模型。结果表明,这种方法是可行的,且有较高的精度。这一模拟的成功,说明神经网络理论是能够应用于工程实际的。 相似文献
6.
7.
针对矿区地表变形预测受多种因素影响的复杂性、非线性等特点,基于新型广义回归神经网络(GRNN),构建了矿区地表变形预测模型。首先,介绍了GRNN的建模原理,并对影响GRNN网络预测的关键因素进行了讨论;其次,为了提高网络的泛化能力及预测精度,采用滚动建模方式对网络进行建模训练,并基于最小均方误差原理提出了交叉验证搜索算法对GRNN网络预测关键参数平滑因子SPREAD进行优选;最后,将优化后的GRNN网络应用于某矿区地表变形预测,并与LM-BP、RBF、回归分析3种模型的预测效果进行了比较,结果表明,GRNN网络泛化能力强、算法稳定,且预测精度较高,适合于矿区地表变形预测。 相似文献
8.
9.
10.
通过应用基于BP神经网络模型系统对某矿山巷道围岩的实测变形值进行神经网络模拟,成功预测了巷道围岩的变形,有利于巷道支护设计和生产组织. 相似文献
11.
12.
针对现有边坡稳定性预测模型存在的不稳定性和精度不高的问题,采用主成分分析方法 PCA和遗传算法GA对传统BP神经网络模型进行优化。PCA方法将露天矿边坡稳定性的6个评价指标转换为4个主成分,作为BP神经网络的输入变量;遗传算法对神经网络的初始权阈值进行了筛选优化。经优化后的模型既减少了神经网络的输入变量,提高了学习训练效率,又使得传统BP神经网络模型的精度大大提高。最后将PCA-GA-BP模型、GA-BP模型和传统BP模型得到的预测结果进行对比和误差分析。结果表明,基于PCA-GA-BP神经网络模型的预测精度较好,对露天矿边坡稳定性的预测具有一定的参考价值。 相似文献
13.
由于经典RBF神经网络中的隐含层节点数、连接权值等结构参数基本由经验获取,因此经典RBF神经网络模型的性能取决于建立模型专家的主观性,存在一定的盲目性和随机性,难以对巷道变形进行准确预测。为此,采用贝叶斯阴阳和谐学习算法对经典RBF神经网络模型的隐含层节点个数、连接权值等结构参数进行了优化,提出了一种基于改进RBF神经网络的巷道变形预测模型,即对角型广义RBF神经网络模型。采用潞安和兖州矿区的综放回采巷道的现场长期监测数据分别对经典RBF神经网络模型以及对角型广义RBF神经网络模型进行了试验分析,结果显示:①对巷道顶底板变形进行预测时,对角型广义RBF神经网络模型的准确率约92.2%,经典RBF神经网络模型的准确率约80.6%;②对煤帮变形进行预测时,对角型广义RBF神经网络模型的准确率约90.2%,经典RBF神经网络模型的准确率约78.6%。上述试验结果表明,对角型广义RBF神经网络模型对于巷道变形预测的精度明显优于经典RBF神经网络模型,对于高精度巷道变形预测有一定的参考价值。 相似文献
14.
15.
16.
17.
神经网络模型及其在煤矿瓦斯预测中的应用 总被引:3,自引:0,他引:3
瓦斯事故是煤矿人员伤亡最多、影响最大的事故。准确预测瓦斯是防止事故、降低损失的基础。人工神经网络由于具有建模能力强,计算准确度高,善于处理模糊的、非线性的、含有噪声的数据等特点,能很好地解决瓦斯预测中的实际问题。简单介绍了神经网络的基本原理和学习算法,建立了基于该原理的BP应用模型,并通过实例进行了验证。 相似文献
18.
19.
陈云浩 《采矿与安全工程学报》1996,(4)
本文简介了灰色预测原理及预测效果的残差检验,结合实例给了灰色模型在预测巷道变形趋势,预测软岩巷道合理的二次支护时间等方面的应用,认为灰色预测方法在地下工程是适用的 相似文献
20.
以自然、行为、经济、技术、政治及组织六个方面的因素为输入层,工程项目整体风险程度为输出层,建立RBF神经网络模型,并以实际数据对该网络进行训练和测试。实践表明,采用该方法所获得的结果是令人满意的,从而展示了神经网络在工程项目风险管理中的广阔前景。 相似文献