共查询到20条相似文献,搜索用时 21 毫秒
1.
The thermal behavior of grass fiber was characterized by means of thermogravimetric analysis and differential scanning calorimetry analysis. The results proved that the removal of water‐soluble matter improved the thermal behavior of grass fiber over that of unleached fiber, and this was further enhanced by an alkali treatment of the grass fiber. The isothermal weight loss of the grass‐fiber specimens was analyzed at 100, 200, and 300°C for different time periods. Accelerated aging of the grass‐fiber samples was carried out to determine the effect of aging on the tensile strength. Partially delignified grass fiber showed maximum thermal stability. X‐ray diffraction analysis was also performed to verify the composition and to correlate the change in the tensile strength due to the water leaching and alkali treatment. The processing of grass fiber with NaOH and NaClO2 reduced the amorphous fraction in the fiber sample. This may have been a result of the loss of the amorphous noncellulosic components of the fibers and the degradation of the unordered regions of the grass fiber. However, mercerization of the grass fiber revealed an increase in the amorphous fraction after a certain time exposure, confirming the decrease in the crystallinity. The morphology of the water‐leached and alkali‐treated grass fiber was studied with scanning electron microscopy © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
2.
Young‐Kyu Lee Dae‐Jun Kim Hyun‐Joong Kim Teak‐Sung Hwang Miriam Rafailovich Jonathan Sokolov 《应用聚合物科学杂志》2003,89(10):2589-2596
The thermal behavior, thermal degradation kinetics, and pyrolysis of resol and novolac phenolic resins with different curing conditions, as a function of the formaldehyde/phenol (F/P) molar ratio (1.3, 1.9, and 2.5 for the resol resins and 0.5, 0.7, and 0.9 for the novolac resins) were investigated. The activation energy of the thermal reaction was studied with differential scanning calorimetry at five different heating rates (2, 5, 10, 20, and 40°C/min) between 50 and 300°C. The activation energy of the thermal decomposition was investigated with thermogravimetric analysis at five different heating rates (2, 5, 10, 20, and 40°C/min) from 30 to 800°C. The low molar ratio resins exhibited a higher activation energy than the high molar ratio resins in the curing process. This meant that less heat was needed to cure the high molar ratio resins. Therefore, the higher the molar ratio was, the lower the activation energy was of the reaction. As the thermal decomposition of the resol resins proceeded, the activation energy sharply decreased at first and then remained almost constant. The activation energy of the thermal decomposition for novolac resins with F/P = 0.5 or F/P = 0.7 was almost identical in all regions, whereas that for novolac resins with F/P = 0.9 gradually decreased as the reaction proceeded. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2589–2596, 2003 相似文献
3.
The atom transfer radical polymerization (ATRP) of n‐docosyl acrylate (DA) was studied at 80°C in N,N‐dimethylformamide using the carbon tetrabromide/FeCl3/2,2′‐bipyridine (bpy) initiator system in the presence of 2,2′‐azobisisobutyronitrile (AIBN) as the source of reducing agent. The rate of polymerization exhibits first‐order kinetics with respect to the monomer. The linear relationship between the molecular weight of the resulting poly(n‐docosyl acrylate) with conversion and the narrow polydispersity of the polymers indicates the living characteristics of the polymerization reaction. The significant effect of AIBN on the ATRP of DA was studied keeping [FeCl3]/[bpy] constant. A probable reaction mechanism for the polymerization system is postulated to explain the observed results. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2147–2154, 2005 相似文献
4.
Preparation and characterization of poly(ethylene terephthalate) copolyesters modified with sodium‐5‐sulfo‐bis‐(hydroxyethyl)‐isophthalate and poly(ethylene glycol) 下载免费PDF全文
Two types of poly(ethylene terephthalate) (PET) copolyesters were successfully prepared with sodium‐5‐sulfo‐bis‐(hydroxyethyl)‐isophthalate (SIPE) and poly(ethylene glycol) (PEG) units with different molecular weights named as cationic dyeable polyester and easy cationic dyeable polyester. Their chemical and crystalline structures were characterized by the nuclear magnetic resonance (NMR), wide angle X‐ray diffraction (WAXD), and small angle X‐ray scattering measurement, and their thermal properties were tested by differential scanning calorimetry and thermogravimetric analysis, respectively. NMR experimental results showed that the actual molar ratio of comonomers was basically consistent with the correlative feed ratio. WAXD results indicated that the crystalline structures of prepared copolyesters were similar to that of PET. Moreover, the glass transition temperature, melting temperature, and thermal degradation temperature were found to decrease with the reduction of the of PEG units as the incorporation of lower of PEG units brought more ether bonds into molecular chains, which increased the irregularity of molecular chain arrangement and led to lower crystallinity. In addition, because the incorporation of PEG units with lower molecular weight led to more ether bonds and hydroxyl end‐groups in molecular chains, the value of contact angle of PET copolyesters dropped, manifesting PET copolyesters had better hydrophilicity with the decreasing molecular weight of PEG units.© 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39823. 相似文献
5.
The influence of functional end groups on the thermal stability of poly(lactic acid) (PLA) in nitrogen‐ and oxygen‐enriched atmospheres has been investigated in this article using differential scanning calorimetry, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Functional end groups of PLA were modified by succinic anhydride and l ‐cysteine by the addition–elimination reaction. PLA was synthesized by azeotropic condensation of l ‐lactic acid in xylene and characterized by nuclear magnetic resonance. The values of the activation energies determined by TGA in nitrogen and oxygen atmospheres revealed that the character of functional end groups has remarkable influence on the thermal stability of PLA. Moreover, DMA confirmed the strong influence of functional end groups of PLA on polymer chains motion. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41105. 相似文献
6.
Fabrication,characterization, and properties of poly(ethylene‐co‐vinyl acetate)/magnetite nanocomposites 下载免费PDF全文
M. T. Ramesan 《应用聚合物科学杂志》2014,131(7)
Poly(ethylene‐co‐vinyl acetate) (EVA)/magnetite (Fe3O4) nanocomposite was prepared with different loading of Fe3O4 nanoparticles. The mixing and compounding were carried out on a two‐roll mixing mill and the sheets were prepared in a compression‐molding machine. The effect of loading of nanoparticles in EVA was investigated thoroughly by different characterization technique such as transmission electron microscopy (TEM), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and technological properties. TEM analysis showed the uniform dispersion of filler in the polymer matrix and the dispersion of filler decreased with increase in filler content. XRD of the nanocomposite revealed the more ordered structure of the polymer chain. An appreciable increase in glass transition temperature was observed owing to the restricted mobility of Fe3O4‐filled EVA nanocomposite. TGA and flame resistance studies indicated that the composites attain better thermal and flame resistance than EVA owing to the interaction of filler and polymer segments. Mechanical properties such as tensile strength, tear resistance, and modulus were increased for composites up to 7 phr of filler, which is presumably owing to aggregation of Fe3O4 nanoparticle at higher loading. The presence of Fe3O4 nanoparticles in the polymer matrix reduced the elongation at break and impact strength while improved hardness of the composite than unfilled EVA. The change in technological properties had been correlated with the variation of polymer–filler interaction estimated from the swelling behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40116. 相似文献
7.
Polychelates were synthesized by the addition of aqueous solutions of copper(II), cadmium(II), and nickel(II) chlorides to aqueous solutions of poly(maleic anhydride‐alt‐acrylic acid) [poly(MA‐alt‐AA)] in different pH media. The thermal properties of poly(MA‐alt‐AA) and its metal complexes were investigated with thermogravimetry and differential scanning calorimetry (DSC) measurements. The polychelates showed higher thermal stability than poly(MA‐alt‐AA). The thermogravimetry of the polymer–metal complexes revealed variations of the thermal stability by complexation with metal ions. The relative thermal stabilities of the systems under investigation were as follows: poly(MA‐alt‐AA)–Cd(II) > poly(MA‐alt‐AA)–Cu(II) > poly(MA‐alt‐AA)–Ni(II) > poly(MA‐alt‐AA). The effects of pH on the complexation and gravimetric analysis of the polychelates were also studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3926–3930, 2006 相似文献
8.
A low molecular weight silk fibroin powder (LMSF) was prepared through high temperature (200°C) and high pressure (20 kgf/cm2), without any addition of chemicals. The carbonized adducts produced during this process were then removed by treatment with activated charcoal. The yield of LMSF by this preparation method was over 60% after the removal of carbonized adducts by using activated charcoal. Amino acid analysis showed an observable decrease in contents of serine and tyrosine in LMSF prepared by this method, as compared to those prepared by neutral salt. The molecular weight of this LMSF was also observably decreased with an increase in the reaction time. From the measurements of differential scanning calorimeter (DSC) and thermal gravimetric analyzer (TGA), thermal properties of LMSF through high temperature and high pressure were also decreased as compared to those produced by neutral salts. In addition, wide‐angle X‐ray diffraction (WAXD) patterns showed that the crystallinity of LMSF differed from that of the original silk fibroin. It can be said that the preparation method of LMSF in this study is a simple, economical, and environmentally compatible process with many advantages. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2890–2895, 2002 相似文献
9.
An important strategy used in the polymer industry in recent years is blending two bio‐based polymers to attain desirable properties similar to traditional thermoplastics, thus increasing the application potential for bio‐based and bio‐degradable polymers. Miscibility of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) with poly(L ‐lactic acid) (PLA) were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Three different grades of commercially available PLAs and one type of PHBV were blended in different ratios of 50/50, 60/40, 70/30, and 80/20 (PHBV/PLA) using a micro‐compounder at 175°C. The DSC and TGA analysis showed the blends were immiscible due to different stereo configuration of PLA polymer and two distinct melting temperatures. However, some compatibility between PHBV and PLA polymers was observed due to decreases in PLA's glass transition temperatures. Additionally, the blends do not show clear separation by SEM analysis, as observed in the thermal analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
10.
Guadalupe Del C. Pizarro Oscar G. Marambio Manuel Jeria O Margarita Huerta Bernab L. Rivas 《应用聚合物科学杂志》2006,100(1):178-185
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006 相似文献
11.
The hydrogen bonding and miscibility behaviors of poly(styrene‐co‐methacrylic acid) (PSMA20) containing 20% of methacrylic acid with copolymers of poly(styrene‐co‐4‐vinylpyridine) (PS4VP) containing 5, 15, 30, 40, and 50%, respectively, of 4‐vinylpyridine were investigated by differential scanning calorimetry, thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). It was shown that all the blends have a single glass transition over the entire composition range. The obtained Tgs of PSMA20/PS4VP blends containing an excess amount of PS4VP, above 15% of 4VP in the copolymer, were found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are able to form interpolymer complexes. The FTIR study reveals presence of intermolecular hydrogen‐bonding interaction between vinylpyridine nitrogen atom and the hydroxyl of MMA group and intensifies when the amount of 4VP is increased in PS4VP copolymers. A new band characterizing these interactions at 1724 cm−1 was observed. In addition, the quantitative FTIR study carried out for PSMA20/PS4VP blends was also performed for the methacrylic acid and 4‐vinylpyridine functional groups. The TGA study confirmed that the thermal stability of these blends was clearly improved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
12.
F. H. Abd El‐Kader S. A. Gafer A. F. Basha S. I. Bannan M. A. F. Basha 《应用聚合物科学杂志》2010,118(1):413-420
Differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction, and ultraviolet–visible spectroscopy of gelatin and poly(vinyl alcohol) (PVA) homopolymers and their blended samples were studied. The data revealed that the gelatin and PVA polymers were compatible over the investigated range of compositions; this contributed to the formation of hydrogen‐bonding interaction between their polar groups. The associated enthalpy‐of‐melting transition and thermal stability of the blended samples increased with increasing PVA content. This indicated that the crystalline structure of PVA was not destroyed completely in the blends, which was consistent with the X‐ray diffraction pattern of the 50/50 (wt %/wt %) blended gelatin/PVA sample. The absorption edge and optical band gap for allowed direct transition were determined from ultraviolet–visible spectra. The induced changes in the band structure are elucidated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
13.
Poly(styrene‐co‐methacrylic acid) (PSMA) and poly(styrene‐co‐4‐vinylpyridine) (PS4VP) of different compositions were prepared and characterized. The phase behavior of these copolymers as binary PSMA/PS4VP mixtures or with poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) as PPO/PSMA or PPO/PS4VP and PPO/PSMA/PS4VP ternary blends was investigated by differential scanning calorimetry (DSC). This study showed that PPO was miscible with PS4VP containing up to 15 mol % 4‐vinylpyridine (4VP) but immiscible with PS4VP‐30 (where the number following the hyphen refers to the percentage 4VP in the polymer) and PSMA‐20 (where the number following the hyphen refers to the percentage methacrylic acid in the polymer) over the entire composition range. To examine the morphology of the immiscible blends, scanning electron microscopy was used. Because of the hydrogen‐bonding specific interactions that occurred between the carboxylic groups of PSMA and the pyridine groups of PS4VP, chloroform solutions of PSMA‐20 and PS4VP‐15 formed interpolymer complexes. The obtained glass‐transition temperatures (Tg's) of the PSMA‐20/PS4VP‐15 complexes were found to be higher than those calculated from the additivity rule. Although, depending on the content of 4VP, the shape of the Tg of the PPO/PS4VP blends changed from concave to S‐shaped in the case of the miscible blends, two Tg were observed with each PPO/PS4VP‐30 and PPO/PS4VP‐40 blend. The thermal stability of the PSMA‐20/PS4VP‐15 interpolymer complexes was studied by thermogravimetry. On the basis of the obtained results, the phase behavior of the ternary PPO/PSMA‐20/PS4VP‐15 blends was investigated by DSC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
14.
Gursewak Singh Navleen Kaur Haripada Bhunia Pramod K. Bajpai Uttam K. Mandal 《应用聚合物科学杂志》2012,124(3):1993-1998
In this study, the degradability of linear low‐density polyethylene (LLDPE) and poly(L ‐lactic acid) (PLLA) blend films under controlled composting conditions was investigated according to modified ASTM D 5338 (2003). Differential scanning calorimetry, X‐ray diffraction, and Fourier transform infrared spectroscopy were used to determine the thermal and morphological properties of the plastic films. LLDPE 80 (80 wt % LLDPE and 20 wt % PLLA) degraded faster than grafted low‐density polyethylene–maleic anhydride (M‐g‐L) 80/4 (80 wt % LLDPE, 20 wt % PLLA, and 4 phr compatibilizer) and pure LLDPE (LLDPE 100). The mechanical properties and weight changes were determined after composting. The tensile strength of LLDPE 100, LLDPE 80, and M‐g‐L 80/4 decreased by 20, 54, and 35%, respectively. The films, as a result of degradation, exhibited a decrease in their mass. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
15.
Thermomechanically stable dielectric composites based on poly(ether ketone) and BaTiO3 with improved electromagnetic shielding properties in X‐band 下载免费PDF全文
High‐performance barium titanate (BaTiO3) filled poly(ether ketone) (PEK) composites were prepared by melt compounding with an aim to investigate the effect of BaTiO3 on thermal, thermomechanical, dielectric, and electromagnetic interference shielding behavior of PEK. The content of BaTiO3 in the PEK matrix was varied from 0 to 18 vol %. Scanning electron microscopy studies shows that BaTiO3 particles were uniformly distributed in the PEK matrix up to 13 vol % loading followed by the formation of agglomerates at higher loading (18 vol %). Rockwell hardness increased up to 13 vol % loading followed by a decrease at 18 vol % loading. Dynamic mechanical analysis revealed that storage modulus increases with increase in BaTiO3 loading with a maximum value of 3192 MPa at 13 vol % compared to 2099 MPa for neat PEK. Dielectric constant of composites measured in the frequency range of 8.2–12.4 GHz increased approximately three times upon incorporation of 18 vol % of BaTiO3. This increment in dielectric constant is reflected in improved electromagnetic shielding properties as loading of dielectric filler (BaTiO3) increases. Total shielding effectiveness of ?11 dB (~92% attenuation) at loading of 18 vol % BaTiO3 justifies the use of these composites for suppression of EM radiations. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46413. 相似文献
16.
To determine the degree of compatibility between poly(lactic acid) and different biomaterials (fibers), poly(lactic acid) was compounded with sugar beet pulp and apple fibers. The fibers were added in 85 : 15 and 70 : 30 poly(lactic acid)/fiber ratios. The composites were blended by extrusion followed by injection molding. Differential scanning calorimetry and thermogravimetric analysis were used to analyze the extruded and extruded/injection‐molded composites. After melting in sealed differential scanning calorimetry pans, the composites were cooled through immersion in liquid nitrogen and aged (stored) at room temperature for 0, 7, 15, and 30 days. After storage, the samples were heated from 25 to 180°C at 10°C/min. The neat poly(lactic acid) showed a glass‐transition transition at 59°C with a change in heat capacity (ΔCp) value of 0.464. The glass transition was followed by crystallization and melting transitions. The enthalpic relaxation of the poly(lactic acid) and composites steadily increased as a function of the storage time. Although the presence of fibers had little effect on the enthalpic relaxation, injection molding reduced the enthalpic relaxation. The crystallinity percentage of the unprocessed neat poly(lactic acid) dropped by 95% after extrusion and by 80% for the extruded/injection‐molded composites. The degradation was performed in air and nitrogen environments. The degradation activation energy of neat poly(lactic acid) exhibited a significant drop in the nitrogen environment, although it increased in air. This meant that the poly(lactic acid) was more resistant to degradation in the presence of oxygen. Overall, injection molding appeared to reduce the activation energy for all the composites. Sugar beet pulp significantly reduced the activation energy in a nitrogen environment. In an air environment, both sugar beet pulp and apple fibers increased the activation energy. The enzymatic degradation of the composites showed a higher degradation rate for the extruded samples versus the extruded/injection‐molded composites, whereas the apple composites exhibited higher weight loss. The thermogravimetric analysis data showed that the degradation of unprocessed and extruded neat poly(lactic acid) followed a one‐step mechanism, whereas extruded/injection‐molded composites showed two‐step degradation. A higher fiber content resulted in up to three‐step degradation mechanisms. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 相似文献
17.
A modified clay was used to prepare poly(L ‐lactic acid)/clay nanocomposite dispersions. X‐ray diffraction and transmission electron microscopy experiments revealed that poly(L ‐lactic acid) was able to intercalate the clay galleries. IR spectra of the poly(L ‐lactic acid)/clay nanocomposites showed the presence of interactions between the exfoliated clay platelets and the poly(L ‐lactic acid). Thermogravimetric analysis and differential scanning calorimetry were performed to study the thermal behavior of the prepared composites. The properties of the poly(L ‐lactic acid)/clay nanocomposites were also examined as functions of the organoclay content. The exfoliated organoclay layers acted as nucleating agents, and as the organoclay content increased, the crystallization temperature increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
18.
The hydrolytic depolymerization of polyethylene terephthalate (PET) with alkaline hydroxides was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The reactions of the mixtures were conducted in their solid states under nitrogen atmosphere. The experimental results showed that potassium hydroxide possessed the hydrolytic activity of depolymerizing PET into small molecules such as ethylene glycol; in contrast, sodium hydroxide did not. The production rate of ethylene glycol was enhanced by increasing charge ratio of potassium hydroxide to PET. The presence of water facilitated the alkaline hydrolysis of PET; however, the presence of metal acetates decreased the hydrolysis rate. The activation energy for alkaline hydrolysis of PET determined by the thermograms was in good agreement with the value obtained from the experiments in a batch reactor. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1939–1945, 1998 相似文献
19.
The melting behavior of polyglycolide (PGA) with eight other biodegradable polymers was investigated to determine whether forming a blend could be used as a method of lowering the melting point of PGA. Blends were prepared by melt processing in differential scanning calorimetry (DSC) pans and were then analyzed by DSC. In every case, a comparison of the blend DSC plot with those of the two individual components showed that the melting behavior of PGA remained unchanged by blending. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2937–2939, 2003 相似文献
20.
Crystallization and melting behavior of partially miscible six‐armed poly(l‐lactic acid)/poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) blends 下载免费PDF全文
The crystallization kinetics and spherulitic morphology of six‐armed poly(L‐lactic acid) (6a‐PLLA)/poly(3‐hydroxybutyrate‐co?3‐hydroxyvalerate) (PHBV) crystalline/crystalline partially miscible blends were investigated with differential scanning calorimetry and polarized optical microscopy in this study. Avrami analysis was used to describe the isothermal crystallization process of the neat polymers and their blends. The results suggest that blending had a complex influence on the crystallization rate of the two components during the isothermal crystallization process. Also, the crystallization mechanism of these blends was different from that of the neat polymers. The melting behavior of these blends was also studied after crystallization at various crystallization temperatures. The crystallization of PHBV at 125°C was difficult, so no melting peaks were found. However, it was interesting to find a weak melting peak, which arose from the PHBV component for the 20/80 6a‐PLLA/PHBV blend after crystallization at 125°C, and it is discussed in detail. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42548. 相似文献