首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
选用改性橡胶粉–水泥砂浆来模拟真实岩石,用玻璃纤维增强塑料作为锚杆材料,研究锚杆对三维表面裂隙岩体的加固止裂效果。结果表明,锚杆提高了裂隙岩体的变形模量和单轴抗拉强度,变形模量随锚固角的增大而增大,而单轴拉伸随锚固角的增大先增大后减小,当锚固角β=45°时,锚杆对单轴抗拉强度的提高幅度最大;锚杆通过其抗滑移和抗剪切性能使裂隙岩体避免发生脆性破坏,并且在预置裂隙起裂之后存在不同程度的残余强度;单轴拉伸条件下加锚或无锚裂隙试件的破坏均以预置裂纹尖端为突破口产生翼裂纹,其扩展方向大致与轴向拉应力方向垂直。当锚固角小于某个临界值时,会有次生裂纹产生;拉伸条件下,含裂隙试件的破坏机制是张拉型裂纹的贯通作用。  相似文献   

2.
通过室内拉拔试验,研究不同侧压系数下锚固失效形式及锚固力的变化规律。研究结果表明:不同侧压系数下锚固破坏以锚杆-锚固层界面脱黏为主,并部分伴有锚固层破碎、锚固层-钻孔壁脱黏;锚杆承受最大荷载随侧压系数的增大而增大,当侧压系数达到1.3时,锚杆所承受最大荷载达到最大值,之后随侧压系数的增大,锚杆所受最大荷载下降;黏结界面随锚固的破坏相继出现弹性变形区、塑性滑移变形区和脱黏变形区,径向荷载主要增加锚杆-锚固层界面塑性滑移变形区的摩擦力,从而增大锚杆拉拔最大荷载。  相似文献   

3.
为分析隧道支护结构作用机制及其在层状和软弱岩体隧道中的支护特性,通过室内物理模拟试验和现场测试,研究普通螺纹锚杆和钢花管锚固下的岩石在单轴压缩试验下的力学、变形特性及其现场支护特性。试验结果表明:(1)锚杆主要通过改善围岩的受力状态和提高围岩强度2个方面来实现其锚固作用,并且锚杆对锚固体围岩强度参数的提高主要表现为预紧力的压缩带作用、锚固剂对围岩损伤的修复作用和锚杆杆体对锚固体整体强度和密度的增强作用3个方面。(2)通过对试验后的加锚试件进行CT扫描发现,锚杆对裂纹的止裂作用是锚固区对裂纹的弱化、剪段、止裂的结果,其止裂效果与锚固区范围大小有关,锚固区范围越大,止裂效果越好。(3)由于药卷锚杆和钢花管的锚固特性不同,药卷锚杆能够很好地锚固岩性一般的层状页岩隧道,而具有注浆功能的钢花管更适用于岩性较差的软弱破碎岩体。  相似文献   

4.
为研究滑动构造区极松软煤层巷道围岩大变形控制机制,综合运用现场调研、理论分析、数值模拟和物理模拟试验等方法,分析极松软煤层巷道支护–围岩系统失稳机制,自主设计大比例尺真三维锚固模型试验系统,并对比研究巷道在低预应力锚杆配合钢塑网护表、高预应力锚杆配合钢塑网与钢筋编织网联合护表2种围岩控制条件下,经受掘进、采动影响过程中围岩应力、锚杆锚固力、围岩体变形的演化规律。结果表明:(1)巷道围岩失稳模式为:锚杆之间松软煤体是锚固作用薄弱区,在围岩载荷作用下首先发生破坏,逐渐产生极不均匀大变形,继而引起锚固围岩系统整体渐进失稳。(2)掘进影响阶段,巷道围岩变形量较小,在较差的围岩控制条件下,巷道浅部0~1.64 m范围围岩径向应力、切向应力出现不同程度降低;而支护初期施加较高的锚杆预紧力和护表强度,可以直接有效地提高巷道浅部围岩的应力水平,使得锚固体具有较强承载能力,巷道浅部围岩应力降低程度相对减小,且围岩径向应力出现降低的范围由0~1.64 m减小到0~1.24 m。经受采动影响后,锚固围岩应力增加量相对提升25.0%~51.8%。(3)采动影响作用下巷道围岩迅速产生强烈变形,尤其锚杆之间围岩产生类似"锥形"的极不均匀大变形区域。在较差锚固作用条件下,浅部围岩不断破碎、局部流失,锚杆轴力急剧升高之后缓慢下降;但在较好的锚固条件下,巷道围岩完整性良好,锚杆之间围岩出现极不均衡大变形的范围明显减小,锚杆轴力急剧升高后继续稳步增加,巷道围岩整体位移量也相对减少31.9%。  相似文献   

5.
为进一步阐明锚固角对锚固节理抗剪作用的影响,开展了无摩擦锚固节理双面剪切试验。对比不同锚固角情况下锚固节理的抗剪强度,分析锚固角对锚固节理抗剪性能的影响。试验采用应变片测量节理岩体中锚杆在节理面位置处的轴力,研究锚固节理在剪切荷载作用下锚杆的轴力变化规律以及变形特性。试验结果表明,锚固角增大,锚固节理极限荷载、屈服荷载以及抗剪刚度先逐渐增大后逐渐减小,在锚固角为60°时达到最大值;不同锚固角锚杆最终破坏模式不同,锚固角较小时,锚杆发生拉剪破坏;锚固角较大时,锚杆发生拉弯破坏;试验也发现,剪切位移较小时,锚杆的抗剪作用就已经充分发挥。  相似文献   

6.
合理确定深埋洞室围岩破裂区厚度及数量可以为洞室开挖及支护提供重要的理论依据。根据围岩分区破裂条件下锚杆拉-压交替分布的受力变形特点,提出一种通过锚杆受力规律反演分析围岩分区破裂的新方法:基于杆体与围岩的协调变形原理,建立全长锚固锚杆与围岩相互作用的力学模型,推导锚杆中性点沿杆体分布位置及其最大轴力的理论公式,分析各分区范围内围岩的破裂区与非破裂区厚度;基于格里菲斯强度理论,提出围岩应力重分布后弹塑性界面岩体发生拉裂的力学判据,进而确定围岩的破裂区数量。结果表明:洞室开挖后围岩应力发生重分布,当弹塑性界面上的岩体在最大切向支撑压力下所产生的拉伸应力超过其极限抗拉强度时,岩体将产生径向拉裂并出现多个破裂区和非破裂区交替分布现象;破裂区和非破裂区内岩体位移速率的差异将导致锚杆沿长度方向出现多个中性点;基于各中性点半径反演分析得到的围岩破裂区厚度大致呈依次递减的趋势,直至围岩破裂停止。最后,运用实例计算结果对上述认识进行验证,研究成果对深埋洞室开挖及围岩支护具有重要参考价值。  相似文献   

7.
针对春季融雪期温度周期性变化导致砂浆岩石锚杆支护结构锚固性能劣化的现象,研究冻融循环对其锚固能力的影响。利用室内模型试验得到不同冻融循环周期下锚杆位移和锚固力的大小,以及锚杆应力、围岩应力、锚杆和砂浆交结面剪应力的变化,从锚杆荷载传递机制出发,研究冻融循环作用下锚杆的破坏模式和影响锚杆锚固性能的主要原因。研究结果表明:冻融循环使砂浆弹性模量和强度降低,加载端砂浆破坏提前,加快了荷载向锚杆深处的传递,锚杆深处应力及锚杆与砂浆交结面的剪应力增大。冻融循环作用下锚杆极限荷载降低,变形增大,且随着冻融周期的增加,荷载–位移曲线的拐点和钢筋滑移曲线的水平段出现提前,锚杆破坏时的极限荷载降低,变形增大。  相似文献   

8.
冻融循环对砂浆岩石锚杆锚固力影响的试验研究   总被引:1,自引:0,他引:1  
 针对春季融雪期温度周期性变化导致砂浆岩石锚杆支护结构锚固性能劣化的现象,研究冻融循环对其锚固能力的影响。利用室内模型试验得到不同冻融循环周期下锚杆位移和锚固力的大小,以及锚杆应力、围岩应力、锚杆和砂浆交结面剪应力的变化,从锚杆荷载传递机制出发,研究冻融循环作用下锚杆的破坏模式和影响锚杆锚固性能的主要原因。研究结果表明:冻融循环使砂浆弹性模量和强度降低,加载端砂浆破坏提前,加快了荷载向锚杆深处的传递,锚杆深处应力及锚杆与砂浆交结面的剪应力增大。冻融循环作用下锚杆极限荷载降低,变形增大,且随着冻融周期的增加,荷载–位移曲线的拐点和钢筋滑移曲线的水平段出现提前,锚杆破坏时的极限荷载降低,变形增大。  相似文献   

9.
为深入研究中风化花岗岩中以全螺纹GFRP筋材为杆体的全长黏结抗浮锚杆锚固机理及破坏机制,进行了螺纹GFRP抗浮锚杆与螺纹钢抗浮锚杆现场拉拔试验。试验结果表明,GFRP抗浮锚杆的极限抗拔承载力高于钢筋抗浮锚杆;相同荷载水平,相同位置处GFRP锚杆的轴力大于钢筋锚杆,钢筋锚杆轴力沿深度衰减的速率比GFRP锚杆快;GFRP锚杆剪应力峰值点较钢筋锚杆更明显,钢筋锚杆的剪应力比GFRP锚杆发挥早,GFRP锚杆的峰值剪应力比钢筋锚杆大;就砂浆与围岩界面的平均黏结强度而言,GFRP抗浮锚杆高于钢筋抗浮锚杆;GFRP抗浮锚杆以杆体材料剪切破坏为主,而螺纹钢锚杆的破坏是锚固体与围岩界面产生剪切滑移破坏。  相似文献   

10.
极软岩回采巷道互补控制支护技术研究   总被引:13,自引:5,他引:8  
 从加固破碎岩体和提高支护阻力两方面综合研究入手,分析小康煤矿巷道围岩的力学及变形破坏特征,得出小康煤矿软岩回采巷道围岩失稳机制,指出原有支护系统变形不协调、支护阻力低和没有发挥围岩的承载能力是导致巷道破坏和支护失效的主要原因。以铁法矿业集团小康矿S2N8运输顺槽为工程实例,研究高强度高预紧力锚杆、强力锚索、金属网和喷浆加固以及U型钢在控制围岩变形中的互补作用,详细介绍高强度、高预紧力锚网索配合U型钢可缩支架的互补控制综合支护方案并进行现场工业试验。研究结果表明,互补控制支护技术能够避免极软岩回采巷道的多次翻修,实现支护一次到位。  相似文献   

11.
锚索预应力变化影响因素及模型研究   总被引:1,自引:1,他引:0  
 岩土体在预应力锚索作用下的压缩变形、锚索自身松弛、周围环境条件的变化等都能引起预应力的变动或损失,这种变化对加固效果和岩土体的稳定性具有十分重要的影响。在综合分析锚索预应力阶段变化特点的基础上,将影响锚索预应力变化的因素归结为可补救、长期作用和周期波动三类,并分别进行了定量和定性分析。根据岩土材料蠕变特性和金属材料松弛特性,采用四参数组合模型反映其相互作用影响。通过实际工程现场长期监测数据,验证了模型的合理性,并建立了考虑波动因素的预应力长期变化峰值预测公式,以用于分析预应力锚固工程的长期稳定性。  相似文献   

12.
锚杆支护系统是控制深部脆性围岩动力灾害的重要措施,但锚固理论研究仍滞后,锚杆支护下的脆性岩体破坏问题困扰着深部岩体工程实践。根据实际工程中锚杆支护下脆性围岩的浅表局部破坏特点,通过室内相似模型试验研究单轴压缩条件下锚杆杆径影响完整脆性岩体的破坏特性,试验表明,锚杆杆径对脆性岩体弹性模量和强度的提升存在最优匹配的特点,一味强调增大锚杆直径并不能达到理想的围岩控制效果;锚杆改变了脆性岩体单轴压缩破坏模式,宏观上由劈裂破坏转为剪切破坏,杆径对试样剪切破坏的程度有所影响。从细观角度,建立了含两条固有主裂纹的裂纹扩展分析模型,加锚试样单轴压缩破裂模式的改变,可以归结为锚杆锚固止裂效应对试样内部裂纹扩展的抑制作用,使翼裂纹与主裂纹长度比η变小。根据最易开裂角度ζ的计算结果,翼裂纹较长时,翼裂纹朝外载作用方向扩展,产生劈裂破坏,翼裂纹较短时,翼裂纹偏离外载作用方向扩展,产生剪切破坏。从细观上很好地解释了锚杆改变脆性岩体破裂模式的作用机制。  相似文献   

13.
提出一种新型钉式双锚头压环锚杆,此种锚杆通过双锚头来提高锚固力,即:第一锚头起导向作用,第二锚头与围岩作用,提高锚杆的锚固力,在软岩中第一锚头有直接锚固作用。通过调整压环与锚头之间的距离来确定锚杆的锚固长度。还介绍了此种锚杆的技术参数,并与砂浆锚杆与管缝锚杆进行试验对比,发现钉式双锚头压环锚杆具有锚固力大,后期锚固可靠。锚杆受力后移出量小,能有效地加固围岩,阻止围岩变形,且安装打设迅速,并可立即承载,锚杆各部位结构设计合理,功能齐全,适应性强等特点。通过在大雁局三矿现场应用表明,其现场应用效果较好。  相似文献   

14.
为研究预应力锚杆作用下节理岩体的变形破坏,通过引入描述锚杆弹塑性变形的普兰特体对原有广义开尔文模型进行修正,建立起描述外荷栽作用下锚杆预应力损失与围岩变形破坏的耦合模型.研究表明:(1)锚杆预应力损失分为两个阶段,且第一阶段预应力损失占总体预应力损失的比重达到92%以上;(2)通过定义松弛时间并绘制松弛曲线,利用岩石蠕...  相似文献   

15.
在高应力作用下,围岩发生大变形破坏的现象非常普遍,硬岩常常产生严重的岩爆灾害,软岩则会表现出挤压大变形问题,严重影响深部工程安全。在这种条件下采用的支护体系不仅要具有较高的承载力,而且要能够适应较大的围岩变形而本身不发生破坏。提出了一种拉压耦合大变形锚杆,并详细介绍了它与围岩之间的相互作用机理。新型锚杆通过改善锚固结构,优化锚杆受力状态,提高了锚固结构的极限承载力,使锚杆杆体的变形性能得到充分的发挥,避免了传统锚杆因杆体不均匀变形导致的破坏问题。因而,高应力大变形条件下新型锚杆的锚固性能更优,更有利于保持围岩稳定。室内实验研究证实,在同等条件下拉压耦合锚杆的极限承载力明显大于传统锚杆,并且具有良好的大变形特性。针对矿山深部开采中遇到的软岩大变形和硬岩岩爆等灾害,新型锚杆将实现更优的加固效应。  相似文献   

16.
深部软弱围岩叠加拱承载体强度理论及应用研究   总被引:2,自引:0,他引:2  
 目前,长锚索与锚喷网支护相结合的支护方式在深部软弱围岩中已经得到了广泛应用,但是对于这种联合支护结构的承载特点缺乏深入了解,特别是对于初次支护和二次支护的承载能力没有量化解析式。因此,在岩石力学理论的基础上,针对深部软弱围岩的“锚喷网+锚索”联合支护特点,提出由主压缩拱(锚杆支护)和次压缩拱(密集型锚索支护)共同构成的叠加拱承载体力学模型;根据弹塑性理论、锚杆的中性点理论和锚索的力传递机制推导初次支护和适当让压后二次支护的承载体强度方程;并将“围岩–支护结构”组成的共同体看作一种等效耦合围岩,运用弹塑性力学方法得到这种等效耦合围岩的力学参数随释放位移(让压位移)变化的关系式。工程计算表明,金川III矿区破碎硐室经叠加拱支护后,极限承载能力 可达到513.34 kN,等效耦合岩体 值可达到47.54°, 最大值为1.37 MPa,提高围岩的峰后强度,有利于硐室围岩的长期稳定;现场监测也表明,进行叠加拱承载体支护后的硐室围岩变形趋于平稳,收敛速率小于0.1 mm/d。  相似文献   

17.
土工布复合锚杆是一种可应用于松散地层锚固工程的新型锚锭结构。以某滑坡治理工程为平台,开展了拉力型土工布加筋复合锚杆锚固体与破碎岩土体界面间应力传递规律的实测研究。现场试验结果表明,土工布的加筋鼓胀作用调整了锚固体与破碎岩土体接触界面的应力分布,土工布加筋复合锚杆锚固段近端存在稍长的应力协调缓冲段,随着荷载增大,黏结应力峰值向锚固段深部转移的现象不明显;实测破碎岩土体中拉力型土工布加筋复合锚杆主要抗力区域分布在3.0~13.0 m之间,即有效锚固体长度以不超过15 m为宜,过长的锚固长度对提高锚杆抗拔力意义不大;在松散破碎岩土体中应用土工布加筋复合锚杆技术能起到提高锚固力与节约成本的双重作用。  相似文献   

18.
全长黏结型预应力锚杆在张拉段具有可靠的岩土自锁锚固特征,可以明显地减少预应力损失,或者在锚头预应力损失的条件下能够使杆体保持有效的预应力水平,避免突发性或灾难性破坏和损失,并且能够提高加固工程的可靠性与安全性。数值模拟分析、现场测试结果和工程实践应用,可充分体现和校验其主要力学特征及加固工程效果。  相似文献   

19.
全螺纹GFRP黏结型锚杆锚固性能试验研究   总被引:4,自引:1,他引:4  
 通过全螺纹GFRP锚杆的改进拉拔试验,测试与分析全螺纹GFRP锚杆在锚固工程中与岩体的黏结性能,并推导出GFRP锚杆的锚固承载力设计公式,给出GFRP锚杆锚固设计各参数的确定方法,以便于全螺纹GFRP锚杆在工程中的应用。试验测试项目包括砂浆强度、锚固长度、锚杆直径等对于全螺纹GFRP锚杆锚固力的影响,以及GFRP锚杆杆体黏结应力分布。测试发现:锚固力随砂浆强度、锚固长度、锚杆直径的增大而增大;黏结强度则随砂浆强度等级增大,但随锚固长度和锚杆直径的增大而减小。分析认为:采用全螺纹GFRP锚杆进行工程锚固时,全螺纹GFRP锚杆的直径可取12~32 mm,锚固长度应大于20倍的锚杆直径,锚固砂浆的强度等级为M15以上。  相似文献   

20.
以翟镇煤矿六采区二、四煤层上行开采为工程背景,为解决上层煤工作面巷道的合理布局问题,采用覆岩组合结构理论、现场实测和仿真模拟的手段,对下层煤采动形成的裂隙带综合形态特征及围岩集中应力分布进行重点研究。结果表明:在组合顶板条件下,裂隙带应是以岩层组为单位呈阶梯状向上发育的,现场实测得到的裂隙带发育高度也验证了上述形成机制;裂隙带空间形态呈现出一个向采空区内侧倾斜的拱形马鞍态,裂缝角为75°~78°;裂隙带内自下向上的分区破裂现象明显,上层二煤处于裂隙带上部的一般开裂区,在该区域布置回采巷道具有较大的可行性;数值模拟结果得到二煤层的断裂位置位于采空区侧3~5 m,内应力场分布范围在采空区侧6~10 m。在对下层四煤采后形成的裂隙带发育高度、空间形态、破裂分区以及集中应力分布进行综合研究的基础上,提出上行开采巷道内错式和外错式两种布局方案,有效避开了裂隙带及集中应力影响范围,取得了较好地现场应用效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号