首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multicast routing is to find a tree which is rooted from a source node and contains all multicast destinations. There are two requirements of multicast routing in many multimedia applications: optimal network cost and bounded delay. The network cost of a tree is defined as the sum of the cost of all links in the tree. The bounded delay of a routing tree refers to the feature that the accumulated delay from the source to any destination along the tree shall not exceed a prespecified bound. This paper presents a distributed heuristic algorithm which generates routing trees having a suboptimal network cost under the delay bound constraint. The proposed algorithm is fully distributed, efficient in terms of the number of messages and convergence time, and flexible in dynamic membership changes. A large amount of simulations have been done to show the network cost of the routing trees generated by our algorithm is similar to, or even better than, other existing algorithms  相似文献   

2.
Existing tree construction mechanisms are classified into source‐based trees and center‐based trees. The source‐based trees produce a source‐rooted tree with a low delay. However, for the applications with multiple senders, the management overheads for routing tables and resource reservations are too high. The center‐based trees are easy to implement and manage, but a priori configuration of candidate center nodes is required, and the optimization nature such as tree cost and delay is not considered. In this paper, we propose a new multicast tree building algorithm. The proposed algorithm basically builds a non‐center based shared tree. In particular, any center node is not pre‐configured. In the proposed algorithm, a multicast node among current tree nodes is suitably assigned to each incoming user. Such a node is selected in a fashion that tree cost and the maximum end‐to‐end delay on the tree are jointly minimized. The existing and proposed algorithms are compared by experiments. In the simulation results, it is shown that the proposed algorithm approximately provides the cost saving of 30 % and the delay saving of 10 %, compared to the existing approaches. In conclusion, we see that the cost and delay aspects for multicast trees can be improved at the cost of additional computations.  相似文献   

3.
New multimedia applications provide guaranteed end‐to‐end quality of service (QoS) and have stringent constraints on delay, delay‐jitter, bandwidth, cost, etc. The main task of QoS routing is to find a route in the network, with sufficient resources to satisfy the constraints. Most multicast routing algorithms are not fast enough for large‐scale networks and where the source node uses global cost information to construct a multicast tree. We propose a fast and simple heuristic algorithm (EPDT) for delay‐constrained routing problem for multicast tree construction. This algorithm uses a greedy strategy based on shortest‐path and minimal spanning trees. It combines the minimum cost and the minimum radius objectives by combining respectively optimal Prim's and Dijkstra's algorithms. It biases routes through destinations. Besides, it uses cost information only from neighbouring nodes as it proceeds, which makes it more practical, from an implementation point of view. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Multimedia applications, such as video‐conferencing and video‐on‐demand, often require quality of service (QoS) guarantees from the network, typically in the form of minimum bandwidth, maximum delay, jitter and packet loss constraints, among others. The problem of multicast routing subject to various forms of QoS constraints has been studied extensively. However, most previous efforts have focused on special situations where a single or a pair of constraints is considered. In general, routing under multiple constraints, even in the unicast case is an NP‐complete problem. We present in this paper two practical and efficient algorithms, called multi‐constrained QoS dependent multicast routing (M_QDMR) and (multicasting routing with multi‐constrained optimal path selection (M_MCOP)), for QoS‐based multicast routing under multiple constraints with cost optimization. We provide proof in the paper that our algorithms are correct. Furthermore, through extensive simulations, we illustrate the effectiveness and efficiency of our proposals and demonstrate their significant performance improvement in creating multicast trees with lower cost and higher success probability. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Multicasting refers to the transmission of data from a source node to multiple destination nodes in a network. Group multicasting is a generalization of multicasting whereby every member of a group is allowed to multicast messages to other members that belong to the same group. The routing problem in this case involves the construction of a set of low cost multicast trees with bandwidth requirements, one for each member of the group for multicasting messages to other members of the group. In this paper, we examine this routing problem with an additional requirement that member nodes are allowed to join and leave the multicasting group anytime during a session. We call this problem, the dynamic group multicast routing problem (DGMRP). In this paper, we proposed three heuristic algorithms to generate a set of low cost multicast trees with dynamic group membership. Results from our empirical study shows that the one of the proposed algorithms, called Maximum bandwidth bottleneck path selection algorithm (MBBPS), achieves better utilization of bandwidth resources as compared with the other two algorithms which are based on a greedy approach. In addition MBBPS performs better in terms of cost when the bandwidth is not sufficient in the network. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
There exist two fundamental approaches to multicast routing: shortest path trees (SPTs) and minimum cost trees (MCTs). The SPT algorithms minimize the distance (or cost) from the sender to each receiver, whereas the MCT algorithms minimize the overall cost of the multicast tree. Due to the very large scale and unknown topology of the Internet, computing MCTs for multicast routing in the Internet is a very complex problem. As a result, the SPT approach is the more commonly used method for multicast routing in the Internet, because it is easy to implement and gives minimum delay from the sender to each receiver, a property favored by many real-life applications. Unlike the Internet, a wireless mesh network (WMN) has a much smaller size, and its topology can be made known to all nodes in the network. This makes the MCT approach an equally viable candidate for multicast routing in WMNs. However, it is not clear how the two types of trees compare when used in WMNs. In this article we present a simulation-based performance comparison of SPTs and MCTs in WMNs, using performance metrics, such as packet delivery ratio, end-to-end delay, and traffic impacts on unicast flows in the same network.  相似文献   

7.
Given a sparse‐splitting wavelength‐division multiplexing network with no wavelength converter, we study a group multicast problem that is how to transmit a number of multicast streams from the video server to multiple destinations simultaneously. To avoid the situation that the wavelengths are used up by the first few requests, one wavelength is available for each multicast request. Hence, some of destinations may not be included in the multicast trees because of the lack of wavelengths. Our goal is to construct a number of light trees with conflict‐free wavelengths for multiple requests so that the number of served clients is maximized. This problem is named as the revenue‐maximized and delay‐constrained group multicast routing problem. We first determine a set of multicast trees with the maximum number of served clients, then followed by the wavelength assignment to allocate the minimum number of wavelengths to the resulting trees. In this study, we propose two Integer Linear Programming ILP‐based algorithms for determining the optimal solutions for the light‐tree construction problem and the wavelength assignment problem, respectively. For large‐scale networks, two heuristics are introduced to solve the light‐tree construction problem approximately. A set of simulations are also provided for comparing performances of our algorithms against the other published methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The paper addresses the issue of minimizing the number of nodes involved in routing over a multicast tree and in the maintenance of such a tree in a datagram network. It presents a scheme where the tree routing and maintenance burden is laid only upon the source node and the destination nodes associated with the multicast tree. The main concept behind this scheme is to view each multicast tree as a collection of unicast paths and to locate only the multicast source and destination nodes on the junctions of their multicast tree. The paper shows that despite this restriction, the cost of the created multicast trees is not necessarily higher than the cost of the trees created by other algorithms that do not impose the restriction and therefore require all nodes along the data path of a tree to participate in routing over the tree and in the maintenance of the tree  相似文献   

9.
We present a new algorithm for online routing of bandwidth-guaranteed multicasts where routing requests arrive one by one without any prior knowledge of future requests. A multicast routing request consists of a source, a set of receivers, and a bandwidth requirement. Two multicast applications of interest are routing of point-to-multipoint label-switched paths in multiprotocol label switched (MPLS) networks, and the provision of bandwidth-guaranteed virtual private network (VPN) services under the "hose" service model. Without prior knowledge of multicast requests, offline multicast routing algorithms cannot be used. Online algorithms are needed to handle requests arriving one by one and to satisfy as many potential future demands as possible. Our new online algorithm is based on the idea that a newly routed multicast must follow a route that does not interfere too much with network paths that may be critical to satisfy future demands. We develop a multicast tree selection heuristic based on the idea of deferred loading of certain critical links. The algorithm identifies them as links that, if heavily loaded, would make it impossible to satisfy future demands between certain ingress-egress pairs. The algorithm uses link-state information and some auxiliary capacity information for multicast tree selection and is amenable to distributed implementation. Unlike previous algorithms, our algorithm exploits any available knowledge of the network ingress-egress points of potential future demands, even though the demands themselves are unknown. It performs very well.  相似文献   

10.
This paper presents a novel framework for quality‐of‐service (QoS) multicast routing with resource allocation that represents QoS parameters, jitter delay, and reliability, as functions of adjustable network resources, bandwidth, and buffer, rather than static metrics. The particular functional form of QoS parameters depends on rate‐based service disciplines used in the routers. This allows intelligent tuning of QoS parameters as functions of allocated resources during the multicast tree search process, rather than decoupling the tree search from resource allocation. The proposed framework minimizes the network resource utilization while keeping jitter delay, reliability, and bandwidth bounded. This definition makes the proposed QoS multicast routing with resource allocation problem more general than the classical minimum Steiner tree problem. As an application of our general framework, we formulate the QoS multicast routing with resource allocation problem for a network consisting of generalized processor sharing nodes as a mixed‐integer quadratic program and find the optimal multicast tree with allocated resources to satisfy the QoS constraints. We then present a polynomial‐time greedy heuristic for the QoS multicast routing with resource allocation problem and compare its performance with the optimal solution of the mixed‐integer quadratic program. The simulation results reveal that the proposed heuristic finds near‐optimal QoS multicast trees along with important insights into the interdependency of QoS parameters and resources.  相似文献   

11.
Huayi  Xiaohua   《Ad hoc Networks》2007,5(5):600-612
In this paper, we investigate the issues of QoS multicast routing in wireless ad hoc networks. Due to limited bandwidth of a wireless node, a QoS multicast call could often be blocked if there does not exist a single multicast tree that has the requested bandwidth, even though there is enough bandwidth in the system to support the call. In this paper, we propose a new multicast routing scheme by using multiple paths or multiple trees to meet the bandwidth requirement of a call. Three multicast routing strategies are studied, SPT (shortest path tree) based multiple-paths (SPTM), least cost tree based multiple-paths (LCTM) and multiple least cost trees (MLCT). The final routing tree(s) can meet the user’s QoS requirements such that the delay from the source to any destination node shall not exceed the required bound and the aggregate bandwidth of the paths or trees shall meet the bandwidth requirement of the call. Extensive simulations have been conducted to evaluate the performance of our three multicast routing strategies. The simulation results show that the new scheme improves the call success ratio and makes a better use of network resources.  相似文献   

12.
Distributed center-location algorithms   总被引:2,自引:0,他引:2  
Recent multicast routing protocol proposals such as protocol independent multicast (PIM) and core-based trees (CBT) have been based on the notion of group-shared trees. Since construction of a minimal-cost tree spanning for all members of a group is difficult, they rely on center-based trees and distribute packets from all sources over a single shortest-path tree rooted at some center. PIM and CBT provisionally use administrative selection or simple heuristics for locating the center of a group but do not preclude the use of other methods that provide an ordered list of centers. Other previously proposed heuristics typically require knowledge of the complete network topology, a requirement which is not always practical for a distributed problem such as Internet routing. We investigate the problem of finding a good center in a distributed fashion, study various heuristics for automating center selection, and examine their applicability to real-world networks. We also propose several new algorithms which we feel to be more practical than existing methods. We present simulation results on hierarchical and nonhierarchical networks showing that of the methods potentially feasible in the Internet multicast backbone, ours offer the best results in terms of cost and delay, and they incur low overhead  相似文献   

13.
We propose and analyze a multicast algorithm named Dynamic Agent-based Hierarchical Multicast (DAHM) for wireless mesh networks that supports user mobility and dynamic group membership. The objective of DAHM is to minimize the overall network cost incurred. DAHM dynamically selects multicast routers serving as multicast agents for integrated mobility and multicast service management, effectively combining backbone multicast routing and local unicast routing into an integrated algorithm. As the name suggests, DAHM employs a two-level hierarchical multicast structure. At the upper level is a backbone multicast tree consisting of mesh routers with multicast agents being the leaves. At the lower level, each multicast agent services those multicast group members within its service region. A multicast group member changes its multicast agent when it moves out of the service region of the current multicast agent. The optimal service region size of a multicast agent is a critical system parameter. We propose a model-based approach to dynamically determine the optimal service region size that achieves network cost minimization. Through a comparative performance study, we show that DAHM significantly outperforms two existing baseline multicast algorithms based on multicast tree structures with dynamic updates upon member movement and group membership changes.  相似文献   

14.
With the developments in multimedia and other real-time group applications, the question of how to establish multicast trees satisfying Quality-of-Service (QoS) requirements is becoming a very important problem. In this paper, multicast routing and wavelength assignment with delay constraint (MCRWA-DC) in wavelength division multiplexing (WDM) networks with sparse wavelength conversions is studied. We propose a colored multigraph model for the temporarily available wavelengths. Based on this colored multigraph model, two heuristic algorithms are proposed to solve the MCRWA-DC problem. The proposed algorithms have the following advantages:(1) finish multicast routing and wavelength assignment in one step; (2) the total cost of the multicast tree is low; (3) the delay from the source node to any multicast destination node is bounded; and (4) locally minimize the number of wavelength conversions and the number of different wavelengths used to satisfy a multicast request. Simulation results show that the proposed algorithms work well and achieve satisfactory blocking probability.  相似文献   

15.
多点广播是一源点传送信息到多个目的节点,成组多点广播是一组节点内部互相进行多点广播。成组多点广播的路由算法是为组内的每一个节点建立一棵路由树,用于点到多点的广播通信。本文提出一种新的成组广播路由算法,它比传统的成组广播路由算法在性能上有了一定的提高,同时更为简洁。  相似文献   

16.
There are two steps to establish a multicast connection in WDM networks: routing and wavelength assignment. The shortest path tree (SPT) and minimum spanning tree (MST) are the two widely used multicast routing methods. The SPT method minimizes the delay from the source to every destination along a routing tree, and the MST method is often used to minimize the network cost of the tree. Load balancing is an important objective in multicast routing, which minimizes the maximal link load in the system. The objective of wavelength assignment is to minimize the number of wavelengths used in the system. This paper analyzes the performance of the shortest path tree (SPT) and minimum spanning tree (MST) methods in the tree of ring networks, regarding the performance criteria such as the delay and network cost of the generated routing trees, load balancing, and the number of wavelengths required in the system. We prove that SPT and MST methods can not only produce routing trees with low network costs and short delays, but also have good competitive ratios for the load balancing problem (LBP) and wavelength assignment problem (WAP), respectively  相似文献   

17.
There are two major difficulties in real‐time multicast connection setup. One is the design of an efficient distributed routing algorithm which optimizes the network cost of routing trees under the real‐time constraints. The other is the integration of routing with admission control into one single phase of operations. This paper presents a real‐time multicast connection setup mechanism, which integrates multicast routing with real‐time admission control. The proposed mechanism performs the real‐time admission tests on a cost optimal tree (COT) and a shortest path tree (SPT) in parallel, aiming at optimizing network cost of the routing tree under real‐time constraints. It has the following important features: (1) it is fully distributed; (2) it achieves sub‐optimal network cost of routing trees; (3) it takes less time and less network messages for a connection setup. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Scalable Multicasting: The Core-Assisted Mesh Protocol   总被引:2,自引:0,他引:2  
Most of the multicast routing protocols for ad hoc networks today are based on shared or source-based trees; however, keeping a routing tree connected for the purpose of data forwarding may lead to a substantial network overhead. A different approach to multicast routing consists of building a shared mesh for each multicast group. In multicast meshes, data packets can be accepted from any router, as opposed to trees where data packets are only accepted from routers with whom a tree branch has been established. The difference among multicast routing protocols based on meshes is in the method used to build these structures. Some mesh-based protocols require the flooding of sender or receiver announcements over the whole network. This paper presents the Core-Assisted Mesh Protocol, which uses meshes for data forwarding, and avoids flooding by generalizing the notion of core-based trees introduced for internet multicasting. Group members form the mesh of a group by sending join requests to a set of cores. Simulation experiments show that meshes can be used effectively as multicast routing structures without the need for flooding control packets.  相似文献   

19.
Algorithms for precomputing constrained widest paths and multicast trees   总被引:1,自引:0,他引:1  
We consider the problem of precomputing constrained widest paths and multicast trees in a communication network. Precomputing and storing of the relevant information minimizes the computational overhead required to determine an optimal path when a new connection request arrives. We evaluate algorithms that precompute paths with maximal bandwidth (widest paths), which in addition satisfy given end-to-end delay constraints. We analyze and compare both the worst case and average case performance of the algorithms. We also show how the precomputed paths can be used to provide computationally efficient solutions to the constrained widest multicast tree problem. In this problem, a multicast tree with maximal bandwidth (widest multicast tree) is sought, which in addition satisfies given end-to-end delay constraints for each path on the tree from the source to a multicast destination.  相似文献   

20.
Source Specific Multicast (SSM) promises a wider dissemination of group distribution services than Any Source Multicast, as it relies on simpler routing strategies with reduced demands on the infrastructure. However, SSM is designed for á priori known and changeless addresses of multicast sources and thus withstands any easy extension to mobility. Up until now only few approaches arose from the Internet research community, leaving SSM source mobility as a major open problem. The purpose of this paper is twofold. At first we analyze characteristic properties of multicast shortest path trees evolving under source mobility. Analytically and by stochastic simulations we derive measures on the complexity of SSM routing under source mobility. At second we introduce a straightforward extension to multicast routing for transforming (morphing) source specific delivery trees into optimal trees rooted at a relocated source. All packet forwarding is done free of tunneling. Multicast service disruption and signaling overhead for the algorithms remain close to minimal. Further on we evaluate the proposed scheme using both, analytical estimates and stochastic simulations based on a variety of real-world Internet topology data. Detailed comparisons are drawn to bi-directional tunneling, as well as to proposals on concurrent distribution trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号