首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Novel polyaniline (PANI)/flowerlike CuS composites with improved electromagnetic interference (EMI) shielding effectiveness (SE) were prepared through the in situ polymerization of PANI into the flowerlike CuS microspheres. X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible optical absorption spectroscopy, thermogravimetric analysis, electrical conductivity testing, and EMI SE testing were used to characterize the as‐obtained products. The results reveal that the flowerlike CuS was uniformly coated by a PANI shell. Most importantly, compared with the original CuS and pure PANI, the novel PANI/flowerlike CuS composites exhibited a remarkably enhanced SE. With a thickness of 3 mm, the optimal EMI SE of the PANI–CuS composites reached ?45.2 dB at 2.78 GHz, and an improved shielding efficiency below ?18 dB was also obtained over the frequency range from 300 kHz to 3 GHz. This suggested that these novel PANI/flowerlike CuS composites have promising applications in the field of shielding materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45232.  相似文献   

2.
Electrically conductive composite nanofibers of polyvinylpyrrolidone (PVP) filled with multi-walled carbon nanotubes (MWCNTs) were prepared by electrospinning process. The complex permittivity and electromagnetic interference shielding effectiveness (EMI SE) of all composite nanofibers were measured in the X band frequency range 8.2–12.4 GHz. The electrical conductivity, real and imaginary part of permittivity, and EMI shielding behaviors of the composite nanofibers were reported as function of MWCNTs concentration. Electrical conductivity of MWCNTs/PVP composite nanofiber followed power law model of percolation theory having a percolation threshold ?c = 0.72 vol% (~1 wt.%) and exponent t = 1.71. The total EMI SE of MWCNTs/PVP composite nanofibers increased up to 42 dB mainly base on the absorption mechanism. The EMI SE measured from experiments was also compared with the approximate value calculated from theoretical model. The obtained theory results confirmed that the selected model presented acceptable performance for evaluating the involved parameters and prediction of the EMI SE of composite nanofibers. The ability of the theoretical model to predict the EMI shielding by reflection and absorption was found to be a function of the frequency, thickness, permittivity, and conductivity.  相似文献   

3.
Hydrochloric acid doped polyaniline (PANI) nanofibers were synthesized by an interfacial polymerization with tetrachloride as the organic solvent and with a relatively higher aniline concentration. The doped PANI nanofibers were dispersed in cyclohexanone and the dispersion was mixed with solution of polyacrylate to prepare PANI nanofibers composite coatings. It was found that the yield of the doped PANI nanofibers can be as high as 23%, though a small amount of irregular shaped PANI particles and PANI nanofibers with relatively larger diameter were also obtained. The conductivity of the PANI nanofibers based composite coatings increased with the PANI nanofibers contents and a percolation threshold of 0.2 was demonstrated. The shielding effectiveness of the PANI nanofibers based coatings increased with PANI nanofibers loadings and shielding effectiveness as high as 63 dB can be achieved with PANI nanofibers loadings of 45%. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

4.
Cotton fabrics with multiwalled carbon nanotubes (MWCNTs) dispersed by Nafion, a polyelectrolyte, and sodium dodecyl benzene sulfonate (SDBS), a surfactant, were prepared for electromagnetic interference (EMI) shielding. The fabrics were characterized by scanning electron microscopy and vector network analysis. The fabrics with the Nafion–MWCNT coating possessed a better shielding efficiency (SE) than those with the SDBS–MWCNT coating because of a more uniform dispersion of MWCNTs, which improved the electrical conductivity and EMI shielding properties. The maximum SE value of the fabric reached 11.48 dB, and the specific SE was 39.6 dB cm3/g. The reflectivity and absorptivity were calculated separately to determine the main mechanism of EMI shielding. The absorptivity was 68.6% at 12 GHz for the Nafion–MWCNT‐coated fabric; this showed that the dominant mechanism of EMI shielding for the treated fabrics was absorption. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40588.  相似文献   

5.
Polyaniline (PANI) deposited polyacrylate (PA) powders were prepared by chemical polymerization of aniline in hydrochloric acid with dispersed PA powders. The powders, after dedoped with ammonia water, were re‐doped with camphorsulfonic acid (CSA) to render them conductive, and conductive PANI/polyacrylate composite coatings (PANI/PA) were prepared by bead milling of these CSA‐doped PANI (PANI–CSA) deposited polyacrylate powders (PANI–CSA/PA). It was found that aniline was polymerized preferentially at the surfaces of the powders and PANI deposited powders were obtained as indicated by the scanning electronic microscopy images. The amount of deposited PANI increased with the aniline/polyacrylate weight ratio in feed, and no isolated PANI particles was found. UV–Vis and Fourier transformed infrared spectra indicated that the PANI layer was physically adhered to the PA powders, and not chemically. Conductivities of the PANI–CSA/PA powders and the PANI/PA coatings increased with the amounts of PANI–CSA and a percolation threshold of 0.2 and 0.3 was demonstrated, respectively. Electromagnetic interference shielding measurements showed that the shielding effectiveness of the PANI/PA coatings increased with PANI–CSA loadings, and shielding effectiveness as high as 60 dB can be achieved with the coatings. POLYM. COMPOS., 27:627–632, 2006. © 2006 Society of Plastics Engineers  相似文献   

6.
Three types of single-walled carbon nanotube (SWCNT) homogeneous epoxy composites with different SWCNT loadings (0.01-15%) have been evaluated for electromagnetic interference (EMI) shielding effectiveness (SE) in the X-band range (8.2-12.4 GHz). The effect of the SWCNT structure including both the SWCNT aspect ratio and wall integrity, on the EMI SE have been studied and are found to correlate well with the conductivity and percolation results for these composites. The composites show very low conductivity thresholds (e.g. 0.062%). A 20-30 dB EMI SE has been obtained in the X-band range for 15% SWCNT loading, indicating that the composites can be used as effective lightweight EMI shielding materials. Furthermore, their EMI performance to radio frequencies is found to correspond well with their permittivity data.  相似文献   

7.
《Ceramics International》2022,48(8):11031-11042
Polyaniline (PANI) and its composite with sulphur doped reduced graphene oxide (S-RGO) have been successively synthesized via in-situ chemical oxidative polymerization of aniline in presence of 10 wt. % S-RGO nanosheets. Physico-chemical analyses of the synthesized nanomaterial was performed with various characterization techniques such as X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) and Thermogravimetric analysis/Differential Scanning Calorimetry (TGA/DSC). The results interpreted from the various characterizations confirm the doping of RGO with sulphur as well as strong interaction of PANI nanofibers and S-RGO nanosheets. TG/DSC curves confirm the enhanced thermal stability of polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites with heat resistance index (THRI) of 155.2 °C in comparision to pure PANI (THRI = 145.3 °C) at a filler loading of 10 wt. %. TGA validates that thermal stability of PANI/S-RGO nanocomposite improves by 6–7 °C than pure PANI in terms of weight loss percentage at a temperature of 1117 °C. However DSC analysis confirms that PANI/S-RGO retains its structural integrity and conformity to temperatures as high as 900 °C beyond which the polymer composite starts to degrade. The electromagnetic interference shielding effectiveness (EMI SE) of PANI and PANI/S-RGO nanocomposites were measured via open-ended coaxial probe set-up connected to a Vector Network Analyser (VNA) at a broadband frequency range of 1–20 GHz (1000–20000 MHz). For EMI SE measurements the various nanomaterials were incorporated into paraffin wax and made into composite pellets of thickness 5 mm by solution casting technique. The dielectric properties, electrical conductivity and EMI SE were all greatly enhanced for the PANI/S-RGO/Paraffin composite pellets. The as synthesized PANI/S-RGO/Paraffin composite pellets exhibited highest EMI SE of ?22.5 dB (>99%) as compared to ?15.89 dB of PANI/Paraffin composite pellets. The prepared composite pellets revealed an absorption dominant mechanism of shielding with highest SEA of ?14.6 dB for PANI/S-RGO/Paraffin composite pellets.  相似文献   

8.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

9.
In this report, multiwalled carbon nanotubes (CNT) embedded poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) microspheres (CNT/SEBS) were prepared by solvent evaporation method. Reduced graphene oxide (rGO) nanosheets were used to cover the surface of CNT/SEBS microspheres. The CNT/SEBS/rGO nanocomposites with special segregated conductive network were fabricated by hot pressing these as-prepared complex microspheres. The morphology, electrical percolation threshold, electrical conductivity, and electromagnetic interference (EMI) shielding effectiveness (SE) of CNT/SEBS/rGO composites were characterized. The shielding mechanisms were discussed in detail. Analysis of electrical conductive performance shows that the electrical percolation threshold of rGO is 0.22 vol %. Results of EMI shielding test confirmed the synergistic effect between CNT and rGO. The EMI SE of the composite filled by 2.1 vol % CNT and 3.35 vol % rGO can achieve 26 dB in 8.2− 12.4 GHz (X band), which exceeds the basic requirement for commercial application (20 dB). Its reflectance coefficient (19–41%) indicates that the most part of incident electromagnetic (EM) wave energy is attenuated through absorption mechanism. This kind of absorptive EMI shielding material can be applied without serious secondary EM radiation pollution problems. The effects of filler content, molding temperature on EMI SE, and shielding mechanism were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48542.  相似文献   

10.
An all polymeric electrically conductive thermoset adhesive resin system is prepared for future lightning strike protection applications. Polyaniline (PANI)‐based hybrid nano‐composite is prepared by incorporating high apparent‐density type vapor grown carbon fiber (VGCF‐H) as additional conductive filler. Electrical, mechanical and electromagnetic interference (EMI) shielding properties of PANI‐dodecylbenzene sulfonic acid (DBSA), and divinylbenzene (DVB) system are improved with addition of VGCF‐H. Different weight percentages of VGCF‐H in the PANI‐DBSA/DVB matrix, are studied, and their effect on composite's properties are investigated. Electrical conductivity up to 1.89 S/cm with the addition of 5 wt% VGCF‐H is achieved, which is almost 300% improvement compared with previous system. However, the maximum flexural modulus is obtained at 3 wt% of VGCF‐H. The change in the electronic structure of PANI with the addition of VGCF‐H is investigated using Fourier transform infrared (FT‐IR) analysis. Rheological study and Differential scanning calorimetry analysis were employed to show the effect of VGCF‐H concentration on curing profile of the nanocomposites. EMI shielding properties of the composite with and without VGCF‐H are measured in X‐band frequencies and compared. Composite with 5 wt% VGCF‐H has shown EMI shielding effectiveness about 51 dB in X‐band, which is higher than the composite without VGCF‐H (around 22 dB). POLYM. ENG. SCI., 59:956–963, 2019. © 2018 Society of Plastics Engineers  相似文献   

11.
Electromagnetic interference (EMI) is an increasingly severe issue in modern life and high-performance EMI shielding materials are in desperate need. To achieve high EMI shielding effectiveness (EMI SE), a series of polybenzoxazine/graphene composites foams are developed using a simple sol–gel method. When the graphene loading increases from 1 to 20 wt%, the density of the composites foams drops from 0.4143 g/cm3 to 0.1654 g/cm3. Meanwhile, an electrically conductive path is formed at around 7 wt% of graphene. Below the percolation threshold, the dielectric constant increases with graphene content and composite foam with 5 wt% graphene shows dielectric constant of 10.8 (1 MHz). At the highest graphene content of 20 wt%, the electric conductivity reaches 0.02 S/cm, 10 orders of magnitude higher than pure polybenzoxazine foam. Benefiting from the high electrical conductivity and lightweight porous structure, the composite foam PF/20G delivers an EMI SE of 85 dB and a specific SE of 513.9 dB·cm3/g. Importantly, the EMI shielding is dominated by absorption attenuation, with PF/20G shows absorption ratio higher than 98% in the range of 8.4–11.0 GHz, which is believed to be caused by multiple internal reflection and absorption inside the conductive foam.  相似文献   

12.
《Ceramics International》2022,48(10):13464-13474
Electromagnetic interference (EMI) shielding materials have become more and more indispensable due to serious electromagnetic-radiation pollution. Herein, waste cotton cellulose aerogels were prepared by dissolving waste cotton fabrics (WCF) in NaOH/urea aqueous solution, and MXene nanosheets were subsequently deposited on the cellulose aerogels by a facile dip coating method to obtain WCF/MXene composite aerogels. The WCF/MXene composite aerogels with highly porous network structure show remarkable electrical conductivity (8.2 Ω/sq of surface resistance), high EMI shielding effectiveness (EMI SE) in the range of 2–18 GHz (39.3–48.1 dB). The WCF/MXene aerogel possesses high SSE and SSE/t of 677.94–829.74 dB cm3 g?1 and 3512.62–4299.17 dB cm2 g?1, respectively (2–18 GHz). In addition, the heating temperature of WCF/MXene composite aerogels reaches 199 °C when 3 V positive voltage is applied on them. The WCF/MXene composite aerogels possess excellent electromagnetic shielding effectiveness, heat generation property and insulation, which can be potentially used as multifunctional materials for EMI shielding, electrical-heating and high temperature protection.  相似文献   

13.
In this work, two types of hybrid composite materials were elaborated. The first based on polyaniline (PANI) doped Camphor Sulfonic acid (CSA), Carbon‐Coated Cobalt (CCo), and FeNi nanoparticles dispersed in polyurethane. A value of 104 S/m of conductivity and a 90 dB of shielding effectiveness in multilayer structure were obtained over the 8–18 GHz frequency band. The second type, based on PANI doped para‐toluene sulfonic acid (PTSA), dispersed in epoxy resin with FeNi nanoparticles. A thick material with moderate conductivity and high attenuation of electromagnetic waves was obtained. It was found that a PANI‐PTSA/FeNi/epoxy resin composite with thicknesses of 9.7 and 6.5 mm had, respectively, reflection loss values of ?22 dB at 9.52 GHz, and ?20.7 dB at 14.7 GHz. The electromagnetic properties of the elaborated structure hybrid materials can be optimized to increase the electromagnetic reflection–absorption properties. Thus, the obtained structure can be used in shielding and radar absorbing materials applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

15.
The technology of steam explosion was adopted to modify sisal fiber (SF) material and two different carbon particles, expanded graphite and conductive carbon black (CCB), were in situ coated on the surface of SF during steam explosion process. The DC conductivity and electromagnetic interference shielding effectiveness (SE) of the modified SF/polypropylene (PP) composites were studied and the measurement of electromagnetic interference (EMI) SE was conducted in two frequency ranges of 400–1,000 MHz and 1–18 GHz. The experimental results showed that this novel coating technology could improve the SE of the modified SF/PP composites significantly, which has a strong dependence on the loadings of the expanded graphite modified sisal fiber (SF‐EG) and conductive carbon black modified sisal fiber (SF‐CCB). When the loadings of SF‐EG and SF‐CCB reached 50 wt%, the maximum values of the SE were 33 dB and 51 dB, respectively. For the modified SF/PP composites, the experimental EMI SE values are in good correlation with the theoretical calculation values in far field of electromagnetic radiation. POLYM. COMPOS., 35:1038–1043, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Multiwalled carbon nanotube (MWCNT) filled poly(ether sulfone) (PES) and poly(ether imide) (PEI) composites were prepared with different MWCNT weight fractions (0.5–5wt%) by a solution mixing technique. Their electrical conductivities, electromagnetic interference (EMI), shielding effectiveness (SE), return loss (RL), and absorption loss (AL) were investigated. Morphologies of the fracture surfaces of nanocomposites studied by scanning electron and transmission electron microscopy showed relatively good MWCNT dispersion and distribution. The electrical conductivity of compression molded samples measured at room temperature indicated that the electrical percolation network was achieved already at 0.5% loading. The measurements of shielding effectiveness (SE) carried out in the frequency range of 8 to 12 GHz (X‐band range) showed that SE increases with measurement frequency and with filler loading, whereby no significant differences could be observed between PES and PEI as matrices. The nanocomposites based on both matrices with 5 wt% loading of MWCNT exhibited shielding levels at 8 GHz between 42 and 45 dB in comparison with the pure polymers which showed value in the range of 1 to 2 dB. RL and AL showed significantly lower values for the composites as compared to unfilled polymers, but no systematic trends were observed on frequency. POLYM. ENG. SCI., 54:2560–2570, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
Polypyrrole (PPy) was polymerized both chemically and electrochemically in sequence on nylon 6 woven fabrics, giving rise to polypyrrole–nylon 6 composite fabrics (PPy–N) with a high electric conductivity. The stability of the composite prepared by electrochemical polymerization (ECP) on chemical oxidative polymerization (COP) fabric was better than that of the composite prepared solely by the COP process, since the AQSA dopant was able to strongly interact with the PPy main chain and had a large molecular structure. The temperature dependence of the conductivity of the composites was verified over four heating and cooling cycles. The change in conductivity over these four repeated heating and cooling cycles was affected by the interaction between the thermal stability of the dopant and the rearrangement of the PPy main chain. The electromagnetic interference shielding efficiency (EMI SE) values were in the range 5–40 dB and depended on the conductivity and the layer array sequence of the conductive fabric. The composites with a high conductivity represented reflection‐dominant EMI shielding characteristics, which are typical of the EMI shielding characteristics of metals. However, composites with low conductivity showed absorption‐dominant EMI shielding characteristics. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1969–1974, 2003  相似文献   

18.
电磁屏蔽织物的制备及性能表征   总被引:3,自引:1,他引:2  
采用真空磁控溅射在涤纶织物上镀上金属镍,然后电镀上金属铜和镍。测试了样品的表面电阻、耐磨性、附着力及其在1kHz~40GHz频率范围内的电磁屏蔽性能。结果表明,样品具有良好的导电性、耐磨性和附着力,在30MHz~1.5GHz内的屏蔽效能大于70dB,在1.5GHz~40GHz内的屏蔽效能大于60dB,可以满足各种条件下的电磁屏蔽要求。  相似文献   

19.
Electromagnetic interference (EMI) shielding materials, especially ones with excellent shielding effectiveness (SE), high optical transmittance, long-term stability as well as high uniformity, are urgently desired to meet the requirements of many applications. Herein, an extremely transparent, stable and uniform silver nanowire (Ag NW)–poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composite film as an EMI shielding material is prepared, which possess excellent shielding capability to both small signal and high power microwaves (HPM). The composite film exhibits SE of 30.5 dB in the frequency range of 1–12 GHz (small signal) and simultaneously has an optical transmittance of 91.0%. The SE continuously increases to 41.4 dB, while the optical transmittance still maintains at 81.1%. The composite film is very uniform, and its SE is almost unchanged even when exposed in air for a year. The SE of this composite film under the excitation of HPM is also thoroughly investigated. The HPM SE is much larger than that of small signal. As the power density of HPM is increased, the SE firstly remains unchanged, then continuously increases, and finally saturates. The SE exceeds 50 dB with the excitation power density of 40 W. More interestingly, the SE is saturated at a fixed HPM power density.  相似文献   

20.
Electromagnetic interference (EMI) shielding effectiveness (SE) of multi-walled carbon nanotubes–polymethyl methacrylate (MWCNT–PMMA) composites prepared by two different techniques was measured. EMI SE up to 40 dB in the frequency range 8.2–12.4 GHz (X-band) was achieved by stacking seven layers of 0.3-mm thick MWCNT–PMMA composite films compared with 30 dB achieved by stacking two layers of 1.1-mm thick MWCNT–PMMA bulk composite. The characteristic EMI SE graphs of the composites and the mechanism of shielding have been discussed. SE in this frequency range is found to be dominated by absorption. The mechanical properties (tensile, flexural strength and modulus) of the composites were found to be comparable or better than the pure polymer. The studies therefore show that the composite can be used as structurally strong EMI shielding material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号