首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 以不饱和聚酯树脂(UPR)为基体,玻纤布、苎麻布及碱式硫酸镁晶须为增强材料。采用模压工艺制备复合 材料。研究了不同复合材料在30℃及50℃水中浸泡时间对其吸水率及其力学性能的影响。结果表明,所有复合材料 的吸水率均随着浸泡时间的延长而逐渐增加,且在起初的0~8h时快速吸水,之后趋缓或不变|50℃时的吸水率总是 高于30℃时的吸水率|玻纤布对UPR的增强效果明显优于苎麻布|与晶须混杂后将降低玻纤布或苎麻布增强聚合物复 合材料的拉伸强度和冲击强度,但却将增加弯曲强度和拉伸模量|随着浸泡时间的延长,玻纤布增强或玻纤布与晶 须混杂增强复合材料的拉伸强度在30℃和50℃时均将下降|苎麻布增强复合材料的冲击强度分别在30℃和50℃水温 浸泡16h时达到最大值,分别为49.1kJ/m2 和48.8kJ/m2,比浸水前的冲击强度分别提高98.78% 和97.57%,而苎麻布 与晶须混杂增强复合材料在两个试验温度下的冲击强度均随着浸泡时间的延长而单调增加。  相似文献   

2.
This work investigates the humidity absorption process in the polyester/glass fiber composite materials containing fillers and low profile additives. These composite materials were exposed to both distilled and sea water at different temperatures. The moisture diffusivity and the moisture equilibrium reached by these composites were determined using the gravimetric test method and their humidity distribution profile across the thickness direction was characterized using the microtome technique. The obtained results indicate that the distilled water diffuses in all composites much more rapidly than the sea water, particularly at high immersion temperatures. However, the opposite is observed at low immersion temperature (5°C), since at this temperature the distilled water is almost in its icy state. For high immersion temperatures, a mass loss of the aged specimen in the sea water was observed 2 months after the first immersion. Such behavior was not observed during the immersion in the distilled water. Moreover, it is observed that the water absorption is higher in the composite materials containing low profile additives. This behavior is explained in terms of microvoids formation promoted by low profile additives. The microtome technique reveals clearly that the humidity profile across the thickness of the aged specimen follows a parabolic trend with a maximum at the outside surface of that specimen and a minimum at its center. These experimental results were found to confirm the theory. POLYM. COMPOS., 28: 355–364, 2007. © 2007 Society of Plastics Engineers  相似文献   

3.
The water absorption behavior of white rice husk ash (WRHA) and silica filled ethylene-propylene-diene-terpolymer/polypropylene (EPDM/PP) ternary composites was studied with special reference to filler type, test specimen preparation (die cut or molded), and dynamic vulcanization of elastomer phase. The water uptake of composites was recorded as a function of them over 40 days of immersion period in distilled water. The influence of final water uptake on tensile properties of the composites was also studied. White rice husk ash filled composites and molded composites exhibit lower water uptake when compared to silica and die cut composites, respectively. All vulcanized composites showed lower water uptake than the unvulcanized composites. After the immersion period in water, tensile properties of unvulcanized composites were almost unaffected while vulcanized composites exhibit an increase in the tensile properties. None of the composites reached the equilibrium state within the immersion period. The results of this preliminary study suggest the importance of in-depth study of water absorption–tensile property correlation of this ternary system over a large span of time till the equilibrium state is reached. It is further revealed that the water absorption behavior depends on the characteristics of the test specimen used.  相似文献   

4.
Although economic, ecological, processing and property considerations suggest that it is very attractive to use lignocellulosic fibers as reinforcement in polymer matrix composites, moisture can strongly and deleteriously affect their properties. In this work the water absorption behavior of sisal/cotton, jute/cotton and ramie/cotton hybrid fabric reinforced composites is evaluated. The effect of the temperature of immersion, fiber volume fraction, and predrying of the fabrics before their incorporation onto the composites are evaluated. Sisal was shown to be the most hygroscopic of the fibers analyzed, and its presence leads to higher values of the maximum water content and of the diffusion coefficient of sisal/cotton reinforced composites. Under the range of temperatures analyzed (30–60°C) the volume fraction of the fibers, rather than the temperature itself, was shown to be the main parameter governing water absorption. Predrying usually lowers maximum water content, although for sisal/cotton reinforced composites a reverse trend was observed for the composites with higher volume fractions. This behavior was again attributed to the higher hydrophilic behavior of sisal fibers.  相似文献   

5.
Textile structures have become quite popular as reinforcement materials in composite laminates due to their high impact‐damage tolerance and energy absorption ability. The impact performance of textile composites is not only affected by the type of fiber/matrix but also by the fabric structure used as reinforcement. The aim of this study was to compare the mechanical and ballistic performance of composite laminates reinforced with single‐layer and double‐layer interlocked woven fabrics. Kevlar®−29 multifilament yarn was used for preparation of all the fabric structures and epoxy resin was used as the matrix system. The composites were produced using a hand lay‐up method, followed by compression molding. The mechanical and ballistic performance of composites reinforced with single‐layer and double‐layer interlocked woven fabrics was investigated in this study. The energy absorption and mechanical failure behavior of composites during the impact event were found to be strongly affected by the weave design of the reinforcement. The composites reinforced with double‐layer interlocked woven fabrics were found to perform better than those comprising single‐layer fabrics in terms of impact energy absorption and mechanical failure. POLYM. COMPOS., 35:1583–1591, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
Films of different composites based essentially on maize starch (MS)/poly(vinyl alcohol) (PVA) blends were prepared by the solution‐casting technique and subjected to various doses (20–100 kGy) of γ‐radiation. The MS/PVA blends were modified by the addition of glycerol (GY) and a graft copolymer (GP) of MS with acrylamide separately or together with the polymer blend solutions before casting. The γ‐treated composites were evaluated in terms of the apparent viscosity and their suitability as sizing materials for cotton fabrics. The sizeability of these composites for cotton fabrics was assessed in terms of the size removal percentage at different temperatures and the effect on the tensile properties and water absorption. The change in the apparent viscosity with the shear rate showed that γ‐irradiation improved the behavior of MS/PVA blends and their composites with GY or GP as a sizing material for cotton fabrics. Moreover, the improvement in the tensile mechanical properties of the sized cotton fabrics with these composites gave further support to this finding. The results for the size removal percentage and water adsorption indicated that these composites could be removed by washing at 70°C for 10 min. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3818–3826, 2004  相似文献   

7.
In this study, we investigated the draping behavior of jute woven fabric to study the feasibility of using natural fabrics in place of synthetic glass‐fiber fabrics. Draping behavior describes the in‐mold deformation of fabrics, which is vital for the end appearance and performance of polymer composites. The draping coefficient was determined with a common drapemeter for fabrics with densities of 228–765 g/m2 and thread counts under different humidity and static dynamic conditions. The results were compared to glass‐fiber fabrics with close areal densities. Characterization of the jute fabrics was carried out to fill the knowledge gap about natural‐fiber fabrics and to ease their modeling. The tensile and bending stiffnesses and the shear coupling were also characterized for a plain woven jute fabric with a tensile machine, Shirley bending tester, and picture frame, respectively. As a case study, the draping and resin‐transfer molding of the jute fabric over a complex asymmetric form was performed to measure the geometrical conformance. The adoption of natural fibers as a substitute for synthetic fibers, where the strength requirements are satisfied, would thus require no special considerations for tool design or common practices. However, the use of natural fibers would lead to weight and cost reductions. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1453–1465, 2013  相似文献   

8.
The aim of this work was to study the kinetics of water uptake and its influence on mechanical behavior of both flax pulps and their composites with a maleic anhydride polypropylene copolymer (MAPP) modified polypropylene (PP) matrix by immersion in distilled water at 30, 50, 70, and 100°C. Both the influence of two different MAPP compatibilizers and the optimum doses of each ones were analyzed. The kinetics of water uptake was studied from weight measurements at regular interval times. The diffusion coefficient was dependent on the immersion temperature and MAPP content. Tensile modulus and strength of single flax fiber decreased by water immersion. Both flexural strength and modulus of composites decreased as a result of the combined effect of thermal ageing and moisture absorption. MAPP coupling agent increases moisture resistance and mechanical properties for MAPP‐modified systems with respect to the unmodified ones. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3438–3445, 2006  相似文献   

9.
Tzeng  Lin 《Carbon》1999,37(12):2011
Effect of interfacial carbon layers on the mechanical properties and fracture behavior of two-dimensional carbon fiber fabrics reinforced carbon matrix composites were investigated. Phenolic resin reinforced with two-dimensional plain woven carbon fiber fabrics was used as starting materials for carbon/carbon composites and was prepared using vacuum bag hot pressing technique. In order to study the effect of interfacial bonding, a carbon layer was applied to the carbon fabrics in advance. The carbon layers were prepared using petroleum pitch with different concentrations as precursors. The experimental results indicate that the carbon/carbon composites with interfacial carbon layers possess higher fracture energy than that without carbon layers after carbonization at 1000°C. For a pitch concentration of 0.15 g/ml, the carbon/carbon composites have both higher flexural strength and fracture energy than composites without carbon layers. Both flexural strength and fracture energy increased for composites with and without carbon layers after graphitization. The amount of increase in fracture energy was more significant for composites with interfacial carbon layers. Results indicate that a suitable pitch concentration should be used in order to tailor the mechanical behavior of carbon/carbon composites with interfacial carbon layers.  相似文献   

10.
The primary purpose of this study is to investigate the anisotropic behavior of different glass‐fabric‐reinforced polyester composites. Two commonly used types of traditional glass fabrics, woven roving fabric and chopped strand mat, have been used. Composite laminates have been manufactured by the vacuum infusion of polyester resin into the fabrics. The effects of geometric variables on the composite structural integrity and strength are illustrated. Hence, tensile and three‐point‐bending flexural tests have been conducted at different off‐axial angles (0, 45, and 90°) with respect to the longitudinal direction. In this study, an important practical problem with fibrous composites, the interlaminar shear strength as measured in short‐beam shear tests, is discussed. The most significant result deduced from this investigation is the strong correlation between the changes in the interlaminar shear strength values and fiber orientation angle in the case of woven fabric laminates. Extensive photographs of fractured tensile specimens resulting from a variety of uniaxial loading conditions are presented. Another aim of this work is to investigate the interaction between the glass fiber and polyester matrix. The experiments, in conjunction with scanning electron photomicrographs of fractured surfaces of composites, are interpreted in an attempt to explain the interaction between the glass fiber and polyester. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
New materials such as basalt fiber offer the promise of innovative applications in transportation because of documented strengths (V. Ramakrishnan, N.S. Tolmare, and V. Brik, “NCHRP‐IDEA Program Project Final Report, ” Transportation Research Board, Washington, DC, (1998)). Previously, we found that mechanical properties of basalt twill fabric‐reinforced polymer composites were comparable to composites reinforced with glass fabrics of similar structures [Q. Liu, M.T. Shaw, R.S. Parnas, and A.M. McDonnell, Polymer Composites, 27(1), 41 (2006)]. Use in transportation also requires knowledge of environmental durability. This study reports the tolerance of basalt‐fiber‐reinforced polymer composites to salt water immersion, moisture absorption, temperature, and moisture cycling. Parallel tests were conducted for the corresponding glass‐reinforced polymer composites. Aging for 240 days in salt water or water decreased the Young's modulus and tensile strength of basalt composites slightly but significantly (p < 0.05). Freeze‐thaw cycling up to 199 cycles did not change the shear strength significantly, but aging in hot (40°C) salt water or water did decrease the shear strength of basalt composites (p < 0.05). The aging results indicate that the interfacial region in basalt composites may be more vulnerable to damage than that in glass composites. POLYM. COMPOS., 27:475–483, 2006. © 2006 Society of Plastics Engineers  相似文献   

12.
The tensile and impact behavior of jute fabrics—polyester composites–were evaluated as a function of the fabric style (knitted or weaved cloths), fiber weight fraction, and direction of the applied load. The tensile properties of plain-weave-fabric-reinforced composites (PWF) were higher than those of plain weft knit cloth composites (WKT) and were dependent on fiber content and test direction. The properties of the WKT, however, were independent of these variables. The results obtained indicate that the orthogonal fiber alignment of weaved cloths favors anisotropy, while the interconnected loops in knit fabrics favors isotropy. The results also indicate weak fiber-matrix interactions in both fabrics and a better fabric impregnation for the plain weave fabric if compared with that of the knit fabric. The impact strengths of both composites were higher than that of the matrix and were shown to increase with fiber content. WKT-reinforced composites showed better impact absorption capacity than PWF composites. This behavior is attributed to the influence of the weaving pattern of the fabrics and to the differences in fabric impregnation by the matrix.  相似文献   

13.
Composites of different lignocellulosic materials and high‐density polyethylene were prepared and their long‐term water absorption behaviors were studied. Wood flour, rice hulls, newsprint fibers, and kenaf fibers were mixed with the polymer at 25 and 50 wt % fiber contents and 1 and 2% compatibilizer, respectively. Water absorption tests were carried out on injection‐molded specimens at room temperature for five weeks. Results indicated a significant difference among different natural fibers with kenaf fibers and newsprint fibers exhibiting the highest and wood flour and rice hulls the lowest water absorption values, respectively. Very little difference was observed between kenaf fiber and newsprint composites and between rice hulls and wood flour composites regarding their water uptake behavior. The difference between 25 and 50% fiber contents for all composite formulations increased at longer immersion times, especially for the composites with higher water absorption. Kenaf fiber composites containing 50% kenaf fibers exhibited the highest water diffusion coefficient. A strong correlation was found between the water absorption and holocellulose content of the composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3907–3911, 2006  相似文献   

14.
The durability of entirely bio‐based composites with respect to the exposure to elevated humidity was evaluated. Different combinations of bio‐based resins (Tribest, EpoBioX, Envirez) and cellulosic fibers (flax and regenerated cellulose fiber rovings and fabrics) were used to manufacture unidirectional and cross‐ply composite laminates. Water absorption experiments were performed at various humidity levels (41%, 70%, and 98%) to measure apparent diffusion coefficient and moisture content at saturation. Effect of chemical treatment (alkali and silane) of fibers as protection against moisture was also studied. However, fiber treatment did not show any significant improvement and in some cases the performance of the composites with treated fibers was lower than those with untreated reinforcement. The comparison of results for neat resins and composites showed that moisture uptake in the studied composites is primarily due to cellulosic reinforcement. Tensile properties of composites as received (RH = 24%) and conditioned (RH = 41%, 70%, and 98%) were measured in order to estimate the influence of humidity on behavior of these materials. Results were compared with data for glass fiber reinforced composite, as a reference material. Previous results from study of unreinforced polymers showed that resins were resistant to moisture uptake. Knowing that moisture sorption is primarily dominated by natural fibers, the results showed that some of the composites with bio‐based resins performed very well and have comparable properties with composites of synthetic epoxy, even at elevated humidity. POLYM. COMPOS., 36:1510–1519, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
研究了树脂基玻璃纤维增强复合材料吸湿过程及其机理。通过对玻璃纤维复合材料吸湿后相关性能的测试,了解了复合材料的吸湿行为,以及吸湿行为对相关性能的影响。研究认为树脂基体及界面的吸湿行为对材料整体性能影响很大,宏观表现为力学性能、热性能等明显下降。研究结果表明纤维复合材料吸湿性不仅取决于树脂基体,与纤维及界面均有关系。  相似文献   

16.
The water sorption characteristics of banana fiber–reinforced polyester composites were studied by immersion in distilled water at 28, 50, 70, and 90°C. The effect of hybridization with glass fiber and the chemical modification of the fiber on the water absorption properties of the prepared composites were also evaluated. In the case of hybrid composites, water uptake decreased with increase of glass fiber content. In the case of chemically modified fiber composites, water uptake was found to be dependent on the chemical treatment done on the fiber surface. Weight change profiles of the composites at higher temperature indicated that the diffusion is close to Fickian. The water absorption showed a multistage mechanism in all cases at lower temperatures. Chemical modification was found to affect the water uptake of the composite. Among the treated composites the lowest water uptake was observed for composites treated with silane A1100. Finally, parameters like diffusion, sorption, and permeability coefficients were determined. It was observed that equilibrium water uptake is dependent on the nature of the composite and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3856–3865, 2004  相似文献   

17.
The tensile creep behavior of unidirectional glass‐fiber polymer composites was studied at three different temperatures, namely 298, 333, and 353 K. Testing was performed on the pure epoxy matrix, the 0° specimens as well as off‐axis at 15, 30, and 60 degrees in respect to the axis of tension. The creep strain rate was negligible at room temperature, while it was considerable at the higher temperatures examined. The materials exhibit nonlinear viscoelastic behavior, and the creep response of the composites was treated as a thermally activated rate process. The creep strain was considered to include an elastic, a viscoelastic and a viscoplastic part. The viscoplastic part was calculated through a functional form, developed in a previous work, assuming that viscoplastic response of polymer composites arises mainly from the matrix viscoplasticity. The model predictions in terms of creep compliances were found to be satisfactory, compared with the experimental results. POLYM. COMPOS. 26:287–292, 2005. © 2005 Society of Plastics Engineers.  相似文献   

18.
Unsaturated polyester and epoxy resin matrices were filled with silane‐treated cellulose fibers and the ensuing composites were tested in terms of mechanical properties before and after accelerated aging consisting of their immersion into water. The coupling agents used were γ‐aminopropyltriethoxysilane (APS), γ‐methacrylopropyltrimethoxysilane (MPS), hexadecytrimethoxysilane, and γ‐mercaptopropyltrimethoxysilane (MRPS) and those containing reactive functions capable of reacting at one end with the fibers and at the other with the matrix, namely, APS, MPS, and MRPS, were more efficient in improving the mechanical properties of the composites. The immersion into water induced a drastic loss of mechanical properties of the materials. The water uptake of the composites was also studied and showed that the silane treatment was poorly efficient in preventing cellulose from water absorption. The fracture surfaces were inspected by scanning electron microscopy, which confirmed the quality of the interface. These observations were in agreement with the results obtained from the dynamic mechanical characterization. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 974–984, 2005  相似文献   

19.
Aramid fiber/glass fiber hybrid composites were prepared to examine the effect of stacking sequence on the impact behavior of thin laminates. The effect of position of the aramid layer on the impact properties of hybrid composites was investigated using driven dart impact tester. The delamination area and fracture surface of hybrid composites were analyzed for correlation with impact energy. The addition of glass layer to aramid layer reduced the impact resistance of hybrid composite due to the restriction in the deformation of aramid layer. The position of aramid layer resulted in variations in the impact behavior of hybrid composites. When the aramid layer was at the impacted surface, the composite exhibited a higher impact energy. This was attributed to the fact that the flexible layer at the impacted surface in thin laminates can experience larger deformation. In three‐layer composites, the aramid fiber‐reinforced composite ( AAA ) exhibited the highest total impact energy due to high impact energy per delamination area (1EDA) in spite of low delamination area. Aramid fiber and glass fiber‐reinforced composites showed a different impact behavior according to the change of thickness. This was attributed to the difference in the energy absorption at interface between laminae.  相似文献   

20.
Hybridization of Banana fibers with glass fibers has been found to reduce the water absorption behavior of the composites in an earlier work by us. Banana fibers were hybridized with glass and different layering patterns were followed in the preparation of the composites. The effect of the various layering patterns on the water absorption of the composites was studied. It was found that water diffusion occurs in the composite depending on the layering pattern as well as the temperature. In all the experiments, it has been found that composites with an intimate mixture of glass and banana show the maximum water uptake except for temperature of 90°C. At 90°C the maximum water uptake is found to be for composites where there is one layer of banana and another layer of glass. The water uptake follows the same trend as that in all other temperatures till a time span of 4900 min is reached. The kinetics of diffusion was found to be Fickian in nature. The various thermodynamic parameters like sorption coefficient, diffusion coefficient. Enthalpy change, entropy change, and activation energy of the various composites were calculated. From all the calculations it has been concluded that layering pattern is an important parameter which controls the water absorption of the composites. The layering pattern Cg‐b‐g was found to have the lowest water uptake. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号