首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To predict the perceived color differences, the effect of the surface texture on the performance of the color difference formulae was investigated. To this end, knitted polyester fabrics with eight different textures were prepared. The fabrics were dyed by seven dyestuffs in five different depths. The selected pairs from the five samples with different depths in each hue covered small to large color differences. The assessed pair of samples had the same texture and hue, but different depths. A panel of 23 observers assessed the color differences of the pairs by gray scale method. The results showed that for the textile samples with different texture structures, the CIEDE2000 (2:1:1) performed the best followed by CMC (2:1:1), CIE94 (2:1:1), and CIELAB with approximately same performance. In addition, the magnitude of color difference influenced the ability of the formulae to predict the visual assessments and the best performance obtained for medium color differences. The comparison between eight different texture groups indicated that the texture structures of the pairs significantly affected the performance of the color difference formulae. For instance, the PF/3 measures obtained for the eight texture groups by CIEDE2000 (2:1:1) color formula could be varied between 21.98 and 33.37 PF/3 units. © 2009 Wiley Periodicals, Inc., Col Res Appl, 2010.  相似文献   

3.
The Technical Committee 1‐55 of the International Commission on Illumination on “Uniform color space for industrial color difference evaluation” is requesting the submission of datasets for use in developing a new approximately uniform color space for industrial use. The data should be submitted to the TC Chair, Dr. Manuel Melgosa at the University of Granada. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 159, 2007  相似文献   

4.
Many consider it futile to try to create color spaces that are significantly more uniform than the CIELAB space, and, therefore, efforts concentrate on developing estimates of perceived color differences based on non‐Euclidean distances for this color space. A Euclidean color space is presented here, which is derived from the CIELAB by means of a simple adjustment of the a* and b* axes, and in which small Euclidean distances agree to within 10.5% with the non‐Euclidean distances given by the CIE94 formula. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 64–65, 2000  相似文献   

5.
A set of 10 color pairs was proposed and produced in 2002 to show the advantages of the CIEDE2000 color‐difference formula with respect to CIELAB. These 10 color pairs illustrated each of the five corrections to CIELAB proposed by CIEDE2000. The 10 color pairs were visually assessed, under reference conditions close to those proposed by CIEDE2000, by two groups of 31 and 21 inexperienced observers, using two different gray scales. Average visual results in these experiments fitted CIEDE2000 predictions much better than CIELAB, as shown by a decrease of Standardized Residual Sum of Squares values of about 20 units. Current visual results showed only the improvement of CIEDE2000 upon CIELAB in predictions of perceived color differences, but they are not recommended for testing new advanced color‐difference formulas. © 2012 Wiley Periodicals, Inc. Col Res Appl, 38, 429–436, 2013.  相似文献   

6.
Relationships between suprathreshold chroma tolerances and CIELAB hue‐angles have been analyzed through the results of a new pair‐comparison experiment and the experimental combined data set employed by CIE TC 1–47 for the development of the latest CIE color‐difference formula, CIEDE2000. Chroma tolerances have been measured by 12 normal observers at 21 CRT‐generated color centers L*10 = 40, C*ab,10 = 20 and 40, and hab,10 at 30° regular steps). The results of this experiment lead to a chroma‐difference weighting function with hue‐angle dependence WCH, which is in good agreement with the one proposed by the LCD color‐difference formula [Color Res Appl 2001;26:369–375]. This WCH function is also consistent with the experimental results provided by the combined data set employed by CIE TC 1–47. For the whole CIE TC 1–47 data set, as well as for each one of its four independent subsets, the PF/3 performance factor [Color Res Appl 1999;24:331–343] was improved by adding to CIEDE2000 the WCH function proposed by LCD, or the one derived by us using the results of our current experiment together with the combined data set employed by CIE TC 1–47. Nevertheless, unfortunately, from the current data, this PF/3 improvement is small (and statistically nonsignificant): 0.3 for the 3657 pairs provided by CIE TC 1–47 combined data set and 1.6 for a subset of 590 chromatic pairs (C*ab,10>5.0) with color differences lower than 5.0 CIELAB units and due mainly to chroma. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 420–427, 2004; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/col.20057  相似文献   

7.
The relations between supplier and customer are today more important than they have ever been. However, conflicts do sometimes arise between them, deriving from differences in the judgment of color matchings. Colorimetry's role is precisely to avoid such conflicts through instrument measurements. A study was made on the pass/fail problems, based on 1,830 measurements and observations made in industrial textile firms, followed by 350 new tests. Human judgments are as liable to errors as instrument measurements, because the surface effects are often misleading for the observer. This study proposes a sorting method that combines the differences deriving from measurements by colorimetric instruments and by visual judgment. The Color Measurement Committee (CMC) equation, widely used in the textile field, has given excellent practical results. The CIE94 equation, which uses the same principle of ellipsoid tolerance, offers a mathematical simplification as well as further information on the sample observation conditions in order to determine color differences. Nevertheless, these two equations are different, and the CIE94 indexes must not be interpreted with the same tolerances as those of the CMC. Pending the CIE recommendations concerning textile samples, new acceptability tolerances should be redetermined for the CIE94. This article presents an innovative way of calculating metameric indexes that, when coupled with acceptability equations, allow the agreement rate between visual judgment and automatic selection to be increased.  相似文献   

8.
An experimental approach is described for measuring colour discrimination thresholds of human observers. Special software was developed for the accurate display of colour pairs on a high resolution CRT, using serial feedback from a spectroradiometer. Discrimination thresholds between a test and a target colour are determined by repeatedly showing an observer a circle composed of four separate quadrants, one of which has a different colour from the other three. Three quadrants are of the test colour and one of the target colour, or vice versa. Observers are asked to select the quadrant that differs from the others. An experiment is described where hue‐dependent effects affecting hue discrimination are investigated. Eighteen hue threshold values around the hue circle, at constant L = 51 and C = 25, were measured for three observers. Hue thresholds were found to vary around the hue circle, exhibiting an abrupt change in the blue to purple region (240° ≤ hab,10 = 300°) This change is not fully accounted for by any CIELAB‐based colour difference formula, including the most recent CIEDE2000 formula. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 410–415, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20153  相似文献   

9.
The calculation of colour distances in the first quadrant of the CIEDE2000 space can be realized now after the author succeeded in working out such calculations in the CIE94 and CMC space in preceeding articles. The new system is presented and then the Euclidean line element is established, from which terms are derived for the new coordinates of lightness, hue, and hue angle. The calculations of colour distances are carried out with the new Euclidean coordinates according to a well‐known method and are demonstrated by examples guided by CIE94 and CMC distances from the preceeding articles. Finally, proposals are given for the eventual improvement of the CIEDE2000 formula. © 2005 Wiley Periodicals, Inc. Col Res Appl, 31, 5–12, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20168  相似文献   

10.
This communication reports additional analyses of the dataset presented in the article “A preliminary comparison of CIE color differences to textile color acceptability using average observers” by Mangine, Jakes, and Noel © 2006 Wiley Periodicals, Inc. Col Res Appl, 31, 239–241, 2006  相似文献   

11.
12.
In this work, we analyzed the color and texture of irises, ocular prostheses, and cosmetic colored contact lenses measured by means of a multispectral system, which provides the CIE L*a*b* colorimetric coordinates of a high resolution image pixel by pixel. The same subject, who has dark brown irises, participated in the measurement of all the contact lenses. The CIE L*a*b* colorimetric coordinates were analyzed to classify the samples into three major groups (brown, blue and green) using a new algorithm developed for this purpose. This classification allowed us to carry out a comparison of the color associated with each set of samples, using the corresponding color gamuts in the CIE L*a*b* color space. Furthermore, we analyzed the iris color reproduction achieved by prostheses and contact lenses in terms of CIEDE2000 color differences, and obtained closer results with prostheses. In addition, we performed an analysis of texture by means of the color spatial distribution of all samples. This was achieved by means of two statistical approaches: first order statistics of image histograms and second order statistics using co‐occurrence matrices. The results suggest that the texture associated with real irises, ocular prostheses and colored contact lenses is very different. This study provides useful information about the color and texture of irises that may help to establish a strategy for improving the techniques used in the manufacturing process of prostheses and colored contact lenses to obtain a better and more realistic appearance. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

13.
High dynamic range (HDR) and wide color gamut imagery has an established video ecosystem, spanning image capture to encoding and display. This drives the need for evaluating how image quality is affected by the multitudes of ecosystem parameters. The simplest quality metrics evaluate color differences on a pixel‐by‐pixel basis. In this article, we evaluate a series of these color difference metrics on four HDR and three standard dynamic range publicly available distortion databases consisting of natural images and subjective scores. We compare the performance of the well‐established CIE L*a*b* metrics (ΔE00 , ΔE94 ) alongside two HDR‐specific metrics (ΔEZ [Jzazbz], ΔEITP [ICTCP]) and a spatial CIE L*a*b* extension (). We also present a novel spatial extension to ΔEITP derived by optimizing the opponent color contrast sensitivity functions. We observe that this advanced metric, , outperforms the other color difference metrics, and we quantify the improved performance with the steps of metric advancement.  相似文献   

14.
Color reproduction is a science in constant development. In this article, a new model to solve the color recipe prediction problem using a genetic algorithm is proposed. The objective is to optimize the color recipe prediction stage by determining the dyes to use in a mixture and their respective proportions to reproduce the target color. Two ranges of dyes were used for dyeing 100% cotton woven fabrics: three reactive dyes (CI Reactive Red 238, CI Reactive Yellow 145, and CI Reactive Blue 235) and four direct dyes (CI Direct Orange 34, CI Direct Red 227, CI Direct Blue 85, and CI Direct Black 22). The criterion of optimization, in reproducing the desired shades, is to minimize the CMC color difference between the desired reference color and the color resulting of the predicted recipe. The proposed algorithm revealed good results with small CMC color differences between target and reproduced colors. The effectiveness of the algorithm was also evaluated and proven by calculating errors between the predicted concentrations in the proposed recipes and the actual concentrations.  相似文献   

15.
It is common practice in statistics to test the equality of two population means using, for example, the Student's t test, in the univariate case, or the Hotelling's T2 Test in the multivariate case. However, tests on the equality of population means are not well developed for testing the difference between two populations of color measurements. Methods for analyzing populations of spectral reflectance and L*a*b* measurements have been described for applications such as analyzing inter-instrument agreement and repeatability. Methods have also been proposed for the analysis of color differences, but there are little written about techniques for testing whether two samples have the same probability distribution. This article focuses on testing the difference between color measurement probability distributions based on color difference. In addition, a metric is proposed called the threshold for color difference discrimination (TCDD, in units of ΔE), the color difference at which two populations can be considered to have different population distributions. A lower TCDD means smaller color differences between two samples can be resolved. Two parametric tests based on Hotelling's T2 test and a nonparametric permutation test were used to determine the TCDD for populations of color measurements with different variances and sample sizes. The TCDD was found to be smaller by tests using the Hotelling's T2 statistic, compared with a permutation test performed directly on color difference. It was also found, as expected, that larger sample sizes led to smaller TCDDs, as did smaller population variances.  相似文献   

16.
The objectives of this work were to develop a comprehensive visual dataset around one CIE blue color center, NCSU‐B1, and to use the new dataset to test the performance of the major color difference formulae in this region of color space based on various statistical methods. The dataset comprised of 66 dyed polyester fabrics with small color differences ($\Delta E_{{\rm ab}}^* < 5$ ) around a CIE blue color center. The visual difference between each sample and the color center was assessed by 26 observers in three separate sittings using a modified AATCC gray scale and a total of 5148 assessments were obtained. The performance of CIELAB, CIE94, CMC(l:c), BFD(l:c), and CIEDE2000 (KL:KC:KH) color difference formulae based on the blue dataset was evaluated at various KL (or l) values using PF/3, conventional correlation coefficient (r), Spearman rank correlation coefficient (ρ) and the STRESS function. The optimum range for KL (or l) was found to be 1–1.3 based on PF/3, 1.4–1.7 based on r, and 1–1.4 based on STRESS, and in these ranges the performances of CIEDE2000, CMC, BFD and CIE94 were not statistically different at the 95% confidence level. At KL (or l) = 1, the performance of CIEDE2000 was statistically improved compared to CMC, CIE94 and CIELAB. Also, for NCSU‐B1, the difference in the performance of CMC (2:1) from the performance of CMC (1:1) was statistically insignificant at 95% confidence. The same result was obtained when the performance of all the weighted color difference formulae were compared for KL (or l) 1 versus 2. © 2009 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

17.
The poor blue constancy of the CIELAB equations has been noted by a number of researchers, and various proposals have been made to address this shortcoming. The specific issue is the tendency for highly chromatic blues to appear more purple as the chroma is reduced for a constant hue angle. The root cause for the poor CIELAB blue constancy has been an open question, although one possibility is a basic deficiency in the CIELAB equations. An alternative hypothesis is that the equations, in combination with color matching functions with a distinct secondary lobe on the x‐bar or long‐wavelength sensitive channel, such as those found on the International Commission on Illumination (CIE) 1931 and 1964 Standard Observers, are problematic. The spectral curves of a constant hue IPT (Intensity, Protan, and Tritan) blue step ramp displayed on a CRT are used to explore this hypothesis. Additional discussion examines the use of sharpened sensors and achieving parallel tritanopic confusion lines in the CIELAB color space. The results suggest that use of the CIE Standard Observers with the CIELAB equations results in poor blue constancy and distorted tritanopic confusion lines. © 2003 Wiley Periodicals, Inc. Col Res Appl, 28, 371–378, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10180  相似文献   

18.
The sizes for the perceptible or acceptable color difference measured with instruments vary by factors such as instrument, material, and color‐difference formula. To compensate for disagreement of the CIELAB color difference (ΔE*ab) with the human observer, the CIEDE2000 formula was developed. However, since this formula has no uniform color space (UCS), DIN99 UCS may be an alternative UCS at present. The purpose of this study was to determine the correlation between the CIELAB UCS and DIN99 UCS using dental resin composites. Changes and correlations in color coordinates (CIE L*,a*, and b* versus L99, a99, and b99 from DIN99) and color differences (ΔE*ab and ΔE99) of dental resin composites after polymerization and thermocycling were determined. After transformation into DIN99 formula, the a value (red–green parameter) shifted to higher values, and the span of distribution was maintained after transformation. However, the span of distribution of b values (yellow–blue parameter) was reduced. Although color differences with the two formulas were correlated after polymerization and thermocycling (r = 0.77 and 0.68, respectively), the color coordinates and color differences with DIN99 were significantly different from those with CIELAB. New UCS (DIN99) was different from the present CIELAB UCS with respect to color coordinates (a and b) and color difference. Adaptation of a more observer‐response relevant uniform color space should be considered after visual confirmation with dental esthetic materials. © 2006 Wiley Periodicals, Inc. Col Res Appl, 31, 168–173, 2006  相似文献   

19.
Visual uncertainty, while reported, is not used routinely when evaluating color‐difference formula performance in comparison with visual data; rather, data are analyzed assuming no uncertainty; that is, repeating the experiment would result in the identical average results. Previously, Shen and Berns developed three methods to determine whether a color‐difference formula was well‐fitting, under‐fitting, or over‐fitting visual data when visual uncertainty was considered, the method dependent on how the uncertainty was reported and the colorimetric sampling of the color‐difference stimuli. The “nonellipsoid standard error method” was used in the current analyses. Three datasets were evaluated: BFD‐P, Leeds, and Witt. For the BFD‐P data, incorporating visual uncertainty led to the same performance results as the average results, that CIEDE2000 was an improvement over CIE94, which was an improvement over CIELAB. For the Witt data, incorporating visual uncertainty led to the same performance results as the average results, that CIEDE2000 and CIE94 had equivalent performance, both an improvement over CIELAB. However, both formulas under‐fitted the visual results; thus, neither formula was optimal. For the Leeds dataset, the visual uncertainty analysis did not support the improvement of CIEDE2000 over CIE94 that occurred when evaluating the average results. Both formulas well fit the visual data. These analyses also provided insight into the tradeoffs between the number of color‐difference pairs and the number of observations when fitting a local contour of equal perceived color difference: In particular, increasing the number of observations was more important than increasing the number of color‐difference pairs. Finally, average standard error could be used to approximate visual uncertainty defined using STRESS. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

20.
A structural comparison has been made of the lightness, chroma, and hue scales of the Munsell system, as expressed in the Munsell Renotations, and of the OSA‐UCS system. While the lightness scales are similar (except for the adjustment for the Helmholtz–Kohlrausch effect and the inclusion of a “crispening” effect in OSA–UCS), there are significant differences in the chroma scales along the major chromatic axes. Unlike in CIELAB, the increments in X and Z along these axes for equal chroma steps in both systems do not fall on a continuous function. In the two systems, as well as in CIELAB lines connecting colors of equal chroma differences at different Y values point to nonreal origins. These differ among the three systems. A major difference between Munsell and OSA–UCS is the size of the first chroma step away from gray. An experiment has been performed with the result that the OSA–UCS system is in much better agreement with the average observer in this respect than the Munsell system. OSA–UCS exhibits considerably more internal uniformity in terms of X and Z increments between steps than the Munsell system. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 186–192, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号